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ABSTRACT The electrocardiogram (ECG) serves as a valuable diagnostic tool, providing crucial
information about life-threatening cardiac conditions such as Atrial Fibrillation and Myocardial Infarction.
A prompt and efficient assessment of ECG exams in environments like emergency rooms (ERs) can
significantly improve the chances of survival for high-risk patients. In this study, we have developed an
artificial intelligence-driven screening system specifically designed to analyze 12-lead ECG images. Our
proposed method has been trained on an extensive dataset comprising 99,746 12-lead ECG exams collected
from the ambulatory section of a tertiary hospital. The primary objective was to accurately classify the
exams into three classes: Normal (N), Atrial Fibrillation (AFib), and Other (O). The evaluation of our
method resulted in AUROC scores of 95.3%, 99.1%, and 93.3% for N, AFib, and O, respectively. To
further validate our approach, we conducted evaluations using the Chinese Physiological Signal Challenge
database. In this evaluation, we achieved AUROC scores of 91.8%, 97.5%, and 70.4% for the classes N,
AFib, and O, respectively. Additionally, we assessed our method using 1,074 exams acquired in the ER, and
achieved AUROC values of 98.3%, 98.0%, and 97.7% for the classes N, AFib, and O, respectively. Finally,
we developed and deployed a system with a trained model within the ER of a tertiary hospital for research
purposes. The system automatically retrieves newly captured ECG chart images from the Picture Archiving
and Communication System (PACS) within the ER. These images undergo necessary preprocessing steps
and serve as input for our proposed classification method. This comprehensive approach has resulted in the
establishment of an efficient and versatile end-to-end framework for ECG classification. The results of our
study highlight the potential of leveraging artificial intelligence in the screening of ECG exams, offering a
promising solution for the rapid assessment and prioritization of patients in the ER.

INDEX TERMS Atrial Fibrillation, Artificial Intelligence, ECG, Emergency Room, 12-lead.

I. INTRODUCTION

CARDIOVASCULAR diseases (CVDs) are the leading
cause of death worldwide [1], particularly in low and

middle-income countries, accounting for approximately 80%
of these fatalities [2]. Furthermore, CVDs impose a signifi-

cant economic burden, encompassing both direct costs (e.g.,
hospitalizations) and indirect costs (e.g., loss of productivity
due to incapacity to work) [3]. Therefore, there is a pressing
need to develop new approaches for the prevention and early
treatment of these diseases.
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In this regard, the electrocardiogram (ECG) plays a crucial
role in accurately identifying various cardiac conditions,
including myocardial infarction and atrial fibrillation. More-
over, ECGs are readily accessible, non-invasive, and cost-
effective. Particularly in emergency units, their significance
is amplified, as prompt screening and diagnosis can signif-
icantly enhance the chances of patient survival. Thus, the
automated classification of ECG exams in such environments
holds the potential to optimize clinical workflow by prioritiz-
ing patients in critical conditions.

Atrial fibrillation (AFib) is the most common form of
chronic sustained cardiac arrhythmia [13]–[15], affecting
nearly one percent of the global population [16]. Its preva-
lence increases with age [1], and individuals over 65 years old
have a fourfold higher prevalence. Moreover, untreated AFib
significantly increases the risk of other cardiac conditions,
including stroke [17], [18]. Early detection and intervention
of AFib, thereby preventing potential harm, can have a sig-
nificant impact on healthcare outcomes and associated costs
[19].

The 12-lead ECG, interpreted by a trained physician, is the
definitive exam for diagnosing AFib [18], [20]. Physicians
typically extract key characteristics from ECG signals, such
as P-wave duration and irregular electrical activity, to identify
irregularities. However, visually inspecting the 12-lead ECG
to detect irregularities is time-consuming. Over the past 50
years, there have been several attempts to develop computer-
ized ECG interpretation methods [21]. These methods utilize
rule-based expert systems that rely on well-known patterns of
AFib to provide classification. However, these methods have
significant drawbacks. First, the classification algorithms are
vendor-specific, meaning they can only be used with equip-
ment from the vendor that developed the algorithm. Second,
accurately identifying certain key ECG features, such as the
QT interval, is challenging [22]. Additionally, the classifica-
tion accuracy, especially for arrhythmias, is limited [23].

On the other hand, the use of deep learning-based tools to
enhance the diagnostic capabilities of cardiac arrhythmias in
both inpatient and outpatient settings have shown remarkable
growth in recent years [24]. These methods offer advantages
by eliminating the dependence on specialist-defined features
for classification. Instead, they adopt an end-to-end approach
where features are automatically extracted from the ECG
exam and used for classification. These algorithms have sig-
nificantly improved the detection of AFib and other cardiac
conditions. However, most of these systems rely on digital
one-dimensional signals [25].

In hospital settings, ECG exams are typically stored as
images or PDF files in the Picture Archiving and Com-
munication System (PACS) [26]. Therefore, applying one-
dimensional ECG classification methods is not feasible in
hospital environments. Although some recent studies have
proposed 12-lead classification systems with good perfor-
mance [5], [27], there is still a literature gap regarding the
deployment of such methods in clinical environments, with
real-time evaluation and appropriate validation. Table 1 pro-

vides a summary of recent 12-lead ECG classification meth-
ods using different deep learning strategies for classification
tasks. As shown, only a minority of studies have utilized 2-D
image-based strategies to classify ECG signals.

Using ECG images for diagnosis through deep learning
is not a new concept [7], [9], [28]. Recently, researchers in
[7] demonstrated that models using ECG images perform
comparably, or even better, than those using one-dimensional
signals. However, unlike our proposed approach, [9] and [7]
used artificially created ECG images to train their models,
while [28] used a limited dataset. Furthermore, the suitabil-
ity of their approaches in hospital environments, such as
collecting exams in DICOM format, extracting image and
demographic information, image preprocessing, classifica-
tion, and providing diagnosis feedback to clinicians, was not
evaluated.

In summary, research studies have a limited impact on
clinical practice due to several factors. Firstly, most studies
primarily focus on one-dimensional ECG signals, which
restricts their applicability. Secondly, algorithms that are
specific to particular equipment and training datasets further
hinder generalizability. Lastly, the current research landscape
often prioritizes improving machine learning model perfor-
mance, while neglecting crucial considerations of practical
applicability.

In this study, we propose a new deep learning-based tool
for classifying ECG exams using images from a dataset
of 99,746 exams acquired from ambulatory patients at a
tertiary referral hospital. We also evaluate the inclusion of
demographic information (age, gender, and ethnicity) in the
classification system [23]. The classification system consid-
ers three classes: Normal (N), Atrial Fibrillation (AFib), and
Other cardiac condition (O). To demonstrate the feasibility
of our approach in clinical settings, we have developed a
screening system specifically designed for implementation in
emergency rooms. This system is integrated into the PACS of
a tertiary referral hospital, enabling the automatic detection
of newly acquired ECG exams within the emergency room.
The ECG image exams, along with relevant demographic
information, are then processed by our classification algo-
rithm. We further validate the effectiveness of our method by
comparing the algorithm’s classification with assessments by
a panel of experts using exams obtained through this system.
Currently, for research purposes, physicians can access this
application through a dedicated screen located in the emer-
gency room.

II. METHODS
A. DATA SOURCE
We utilized 12-lead ECG exams collected from 2017 to
2020 from the Picture Archiving and Communication System
(PACS) of a specialized tertiary referral hospital in Brazil
that focuses on cardiology. The exams were obtained from
MORTARA™ ELI 250c machines, which digitally captured
the ECG signals and transmitted them to the hospital’s PACS
via a gateway. This gateway automatically converted the
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TABLE 1. Summary of recent 12-leads ECG classification methods.

Authors Dataset Signal Type Method
Leur et al. (2020) [4] Private 1-D ResNet

Ribeiro et al. (2020) [5] UFMG-Code [5] 1-D ResNet
Baek et al. (2021) [6] Private 1-D RNN

Sangha et al. (2022) [7] UFMG-Code [5] 1-D ResNet
Sangha et al. (2022) [7] UFMG-Code [5], PTB-XL [8] 2-D ResNet
Gliner et al. (2020) [9] CPSC2018 [10] 1-D CNN
Gliner et al. (2020) [9] CPSC2018 [10] 2-D CNN

Vranken et al. (2021) [11] Private, CPSC2018 [10] 1-D ResNet
Zhang et al. (2021) [12] CPSC2018 [10] 1-D CNN

signals into 2D images in Digital Imaging and Communica-
tion in Medicine (DICOM) format. The resulting image was
presented as an A4-format chart, incorporating a reference
grid with a resolution of 25 mm/s for the time axis and
10 mm/mV for the voltage axis. Subsequently, these images
were converted to Portable Network Graphics (PNG) format
and subjected to an automated cropping process to eliminate
any private information at the top of the image.

Each ECG exam was accompanied by a diagnostic report
in structured text format. Exams with the same diagnosis
shared the same diagnostic text. The dataset consisted of
52 different diagnoses, which were categorized into three
classes: Normal (N), Atrial Fibrillation (AFib), and ECG ab-
normalities (O). To build the dataset, we incorporated patient
demographic information such as age, ethnicity, and gender.
Patients with pacemakers or under 18 years of age were ex-
cluded from the study due to different diagnostic criteria used
for evaluating their ECG exams. Additionally, exams without
an associated diagnosis or with ambiguous diagnoses, such as
"ECG may present first-degree atrioventricular block," were
disregarded to ensure the neural network learning process
was not influenced by diagnostic uncertainty. After applying
these exclusion criteria, the final dataset, referred to as InCor-
DB, consisted of 99,746 ECG exams from 64,192 unique
patients. It included anonymized 2D image ECG exams, their
diagnostic reports (N, O, and AFib), and de-identified patient
demographic information (age, gender, and ethnicity). This
private dataset complied with all relevant ethical regulations
and was approved by the Internal Review Board (IRB) under
registration CAAE 45070821.3.0000.0068.

To prevent intra-subject bias, we took meticulous mea-
sures to ensure that identical subjects were not included
in both the training and test sets. When the training and
test sets involved the same subject (intra-subject paradigm),
the model captured subject-specific heartbeat characteristics,
potentially enhancing test performance due to data leakage.

To demonstrate the generalizability of our proposed
method, we tested our model on an external database, the
China Physiological Signal Challenge (CPSC). This dataset
comprised 6,877 12-lead one-dimensional ECG signals with
durations ranging from 6 to 60 seconds. The signals were
classified into nine different classes: Normal, Atrial Fibrilla-
tion, First-degree atrioventricular block, Left bundle branch
block, Right bundle branch block, Premature atrial con-

traction, Premature ventricular contraction, ST-segment de-
pression, and ST-segment elevation. Similar to InCor-DB,
these nine classes were clustered into the N, O, and AFib
categories, and patients under 18 years old were excluded.
More information about the CPSC dataset can be found in
[10]. Table 2 summarizes the datasets used in our study.

B. DEPLOYMENT OF THE MODEL IN THE EMERGENCY
UNIT
Furthermore, we deployed our model in the Emergency Unit
of a tertiary referral hospital system for research purposes.
We developed a system that evaluates every new ECG exam
captured in the emergency room and provides a prioritized
list of exams to the physicians. Exams classified as atrial
fibrillation have higher priority.

Each MORTARA™ ELI equipment in the hospital is con-
nected to a gateway that converts the ECG data from propri-
etary to DICOM format. This gateway sends each DICOM
file to the hospital’s PACS. To deploy our model, we first
developed a service that processes each new ECG exam from
the emergency unit sent to the PACS. It classifies the ECG
and saves the information in a database. This information
is then exposed through a REST service to a web client,
which provides visual feedback to the clinical staff in the
emergency unit. The web page is displayed on a monitor
in the emergency room. Patients are listed following a pri-
oritization protocol: exams classified as Atrial Fibrillation
(AFib) have the highest priority, followed by Other diseases
(O), and then Normal (N). Additionally, within the same
classification, more recent exams have lower priority. On the
web page, higher priority results in a higher position in the
spreadsheet. Figure 1 illustrates the pipeline for deploying
our model in a hospital setting and how it integrates within
the hospital dataflow infrastructure.

C. DATA PREPROCESSING
A significant portion of the information in an ECG image,
such as color information, holds limited relevance for di-
agnostic purposes. Additionally, considering the consistent
grid scale used in our ECG exams (25 mm/s on the x-axis
and 0.5 mV/mm on the y-axis), the grid-related information
is non-informative. Therefore, our primary objective during
the preprocessing stage was to optimize the efficiency of our
neural network by removing all extraneous and nonessential
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TABLE 2. Patients demographic information of our employed datasets.

InCor-DB CPSC Emergency Room

Demography
Male: N (%) 51,778 (51.9%) 3,622 (53.9%) 602 (56.0%)

Age: Mean (SD) 60.2 (16.6) 61.2 (17.9) 61.6 (14.7)
Ethnicity: N (%) 85,395 (85.6%) - 697 (62.9%)

Diagnosis
Normal: N (%) 19,282 (19.3%) 821 (12.2%) 139 (12.9%)

FA: N (%) 9,017 (9.0%) 1,219 (18.1%) 141 (13.1%)
Other: N (%) 80,464 (80.7%) 4684 (69.7%) 794 (73.9%)

FIGURE 1. Diagram of the integration of the proposed method within the hospital dataflow infrastructure.

information.

The initial step involved converting the 2D ECG images
into grayscale. Subsequently, a threshold filter was applied
to remove the reference grid, but this process introduced salt
and pepper noise. To eliminate the noise, a morphological
erosion operation followed by dilation was performed. Af-
terward, each lead, including the 10-second DII lead, was
separated individually. To decrease the computational com-
plexity, the images were resized to 30% of their original size.
As a result, the short lead images (DI, DII, DIII, avR, avL,
avF, V1, V2, V3, V4, V5, and V6) became 144 x 224 pixels,
while the long lead image (10-second DII) became 141 x
898 pixels. The short lead images were stacked to create a
3D volume, which, along with the long lead image, served
as the input for our proposed neural network architecture.
Figure 2 illustrates the preprocessing steps involved in our
methodology.

To test the network using the CPSC dataset, it was nec-
essary to transform the one-dimensional signals into corre-
sponding image representations. To achieve this, a MOR-
TARA ECG image template without any signal was used

as the background, onto which the signals were superim-
posed. This image-based representation required leads with
a minimum length of 10 seconds. However, some signals in
the CPSC dataset did not meet this requirement. To address
this challenge, the insufficiently long signals were padded by
replicating the initial segment until they reached a duration
of 10 seconds.

The demographic information data also underwent prepro-
cessing procedures. Gender information was mapped, desig-
nating male and female patients as 1 and 0, respectively. A
similar approach was taken for ethnicity, assigning a value
of 0 to patients identified as Afro-American or mixed, and
a value of 1 to others. To normalize age, the actual age was
divided by 100.

D. PROPOSED NETWORK ARCHITECTURE

The proposed approach is a deep neural network with three
inputs: a stack of short leads (DI, DII, DIII, avR, avL, avF,
V1, V2, V3, V4, V5, and V6), a long lead (10-second DII),
and demographic information (age, gender, and ethnicity).
Each lead is individually cropped from preprocessed ECG
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FIGURE 2. Diagram with the preprocessing steps.

images. The short leads are then packed into a 3D volume of
size 144 x 224 x 12 and fed into a stack of 3D convolutions.
Simultaneously, the long lead is processed by a stack of 2D
convolutions. The outputs of these two branches are concate-
nated with the demographic information and connected to
a fully connected layer, followed by a classification output
layer.

In the 2D branch, we employ four consecutive convolu-
tional blocks. Each block consists of a 2D convolution layer
with 16 filters of size 3x3, followed by a batch normalization
layer. Another 2D convolution layer with the same config-
uration is added, followed by another batch normalization
layer, and finally a max-pooling layer with a pool size of 2x3.
Two additional convolutional blocks with the same layout are
stacked. However, the pool size of the max-pooling layer in
these blocks is reduced to 2x2.

The 3D branch consists of six convolutional blocks. Each
block contains a 3D convolutional layer, followed by a batch
normalization layer, another 3D convolutional layer, another
batch normalization layer, and finally a max-pooling layer.
Each 3D convolutional layer uses 16 filters of size 3x3x3.
The pool size of the max-pooling layers in the first two blocks
is 2x2x2, in the third block it is 3x2x2, and in the last three
blocks it is 1x2x2.

The outputs of the 2D and 3D branches are concatenated
with the demographic information and then passed through
a dense layer with 16 units. Finally, a dense layer with 3
units and a sigmoid activation function is employed for clas-
sification into three classes: Normal (N), Atrial Fibrillation
(AF), and Other diseases (O). Gender, age, and ethnicity
information are significant factors in clinical practice for
the diagnosis of cardiovascular diseases [29]. Therefore, this
information is incorporated into the network. The proposed
architecture for ECG classification is illustrated in Figure 3.

E. NETWORK TRAINING

We built our neural network using the Keras API (version
2.4.3) with the TensorFlow backend (version 2.3.0) in Python
(version 3.6.8). For training, we utilized the Adam optimizer
with default parameters to minimize the cross-entropy. A

batch size of 64 and a maximum of 100 epochs were em-
ployed.

To prevent overfitting, we implemented an early stopping
callback with a patience of seven epochs. This means that
if the model does not improve on the validation dataset for
seven consecutive epochs, training is stopped. The training
was conducted on a computer server equipped with four 16
GB V100 GPUs, 128 GB of RAM, and 16 4 GHz CPUs.
The entire training dataset, approximately 4 GB in size,
was directly transferred to the computer RAM through the
/dev/shm partition. This step accelerates batch construction
during training and reduces training time. Training and eval-
uation on the InCor-Db dataset took approximately 4 hours.

III. RESULTS
A. EXPERIMENTAL SETUP

We used the InCor-DB dataset, acquired retrospectively from
a tertiary referral hospital, which consists of 99,746 ambu-
latory exams from 64,192 different patients. External vali-
dation was performed using the CPSC dataset. Additionally,
our method was validated using 1,074 exams captured during
a one-month period in the emergency room of a tertiary
referral hospital. For all datasets, we considered three classes
for classification: Normal (N), Atrial Fibrillation (AFib), and
Other cardiac conditions (O). To train the proposed network,
we divided the InCor-DB into training, validation, and testing
sets, with proportions of 60%, 20%, and 20% respectively.
This division followed an inter-patient protocol, ensuring that
exams of a patient did not appear in different splits. In order
to compare our results with the existing literature, we em-
ployed five classification metrics Sensitivity (Se), Specificity
(Spe), F1-score (F1), Area Under the Receiving Operating
Curve (AUROC), and Accuracy (Acc). In the upcoming
sections, we will present the results obtained for the testing
set of the InCor-DB, the CPSC dataset, and the evaluation
of our deployed method in the emergency unit of a tertiary
hospital over a one-month period. In the latter case, we com-
pared the outcomes obtained by our proposed method against
those of a committee comprising three certified cardiologists
with a minimum of 5 years of experience. Furthermore, we
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Normal Atrial Fibrillation Other disease

FIGURE 3. Proposed network architecture.

investigated whether the inclusion of demographic variables
could enhance the performance of our model.

B. PERFORMANCE ON INCOR-DB DATASET

Using 20% of the InCor-DB dataset for testing, we achieved
the following results for the AFib class: 94.5% sensitivity
(Se), 98.4% specificity (Spe), 90.3% F1-score (F1), 99.1%
Area Under the Receiving Operating Curve (AUROC), and
98.0% accuracy (Acc). Notably, our model exhibited a high
sensitivity value for detecting AFib, providing compelling
evidence for its successful applicability in screening pur-
poses. Additionally, commendable results were obtained for
the Normal and Other classes, with an AUC exceeding 90%.
For a comprehensive overview of the results obtained on this
dataset, please refer to Table 3.

TABLE 3. Performance of ECG classification in the InCor-Db dataset test set.

Sen Spe F1 AUROC Acc
Normal 86.4 90.8 81.0 95.3 89.7
AFib 94.5 98.4 90.3 99.1 98.0
Others 89.3 84.5 91.5 93.3 88.0
Average 90.0 91.2 87.6 95.9 91.9

C. EXTERNAL VALIDATION ON CPSC DATASET

The division of the training, validation, and test sets within
the InCor-DB dataset was performed randomly to ensure that
patients did not overlap across different sets. However, it is
important to consider that all ECG exams in this dataset were
captured using the same equipment, which introduces the
possibility of potential bias. To demonstrate the generaliz-
ability of our results, we applied our trained network to the
ECG data from the CPSC dataset. For Atrial Fibrillation, our
method achieved the following performance metrics on the
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CPSC dataset: sensitivity (Se) of 88.6%, specificity (Spe) of
97.8%, F1-score of 89.2%, area under the receiver operating
characteristic curve (AUROC) of 97.5%, and accuracy (Acc)
of 96.2%. Despite the CPSC dataset comprising patients from
a different hospital, country, equipment, and using 1D signals
instead, our method still achieved comparable results to our
internal dataset (InCor-DB). Table 4 provides a summary of
the results obtained for the CPSC dataset.

TABLE 4. Performance of ECG classification on the external validation set in
the CPSC dataset.

Sen Spe F1 AUROC Acc
Normal 92.5 77.3 54.4 91.8 79.3
AFib 88.6 97.8 89.2 97.5 96.2
Others 71.9 62.8 77.3 70.4 69.4
Average 84.3 79.3 73.6 86.5 81.6

D. DEPLOYED MODEL INTO THE EMERGENCY UNIT
To validate our model in the emergency unit, we followed
a specific procedure. Initially, we gathered ECG exams from
this unit over a period of one month. Subsequently, our model
was employed to predict the classification of each ECG exam.
To ensure accuracy, two cardiologists were provided with the
same set of exams, along with relevant information such as
gender, age, and ethnicity. Each cardiologist independently
assigned each exam to one of the following classes: N, AFib,
or O. In cases where the two cardiologists disagreed on the
classification of an exam, a third cardiologist was consulted
to determine the final label. During our analysis, we ex-
cluded exams conducted on patients below 18 years of age.
However, due to the unavailability of reports for the exams
conducted in the emergency unit, we were unable to exclude
exams from patients with pacemakers. Consequently, we
requested the cardiologists to determine whether each exam
belonged to a pacemaker user or not. Throughout the one-
month evaluation, a total of 1,074 valid exams were collected.
The results obtained from this evaluation are presented in
Table 5, showcasing the outcomes observed in the emergency
unit.

TABLE 5. Performance of ECG classification on the Emergency Unit.

Sen Spe F1 AUROC Acc
Normal 86.3 97.3 84.5 98.3 95.9
AFib 88.7 96.1 82.8 98.0 95.2
Others 95.6 85.6 96.5 97.7 94.1
Average 90.2 93.0 87.9 98.0 95.0

E. ANALYSIS OF DEMOGRAPHIC VARIABLES
We conducted an analysis to investigate whether the inclusion
of demographic variables, namely gender, age, and ethnicity,
would enhance the performance of the model. We employed
an 8-fold cross-validation approach, training the model with
various configurations: (0) No demographic variable; (1) All
demographic variables; (2) Gender and Age; (3) Gender and
Ethnicity; (4) Age and Ethnicity; (5) Gender; (6) Age; and

(7) Ethnicity. However, our findings, presented in Tables 6, 7,
and 8, indicate that the inclusion of these demographic vari-
ables did not improve the performance of our classification
model.

IV. DISCUSSION
We have successfully developed an externally validated au-
tomated diagnosis tool capable of accurately identifying
rhythm disorders from ECG images. The tool demonstrated
high discriminatory power across multiple test sets, effec-
tively distinguishing between the proposed classes. More-
over, it exhibited robust generalization across an external
dataset.

While there is an extensive body of literature on ECG
classification, the implementation of such systems in hospital
settings to improve medical care remains limited. Despite
numerous studies reporting exceptional results, the clinical
validation and real-world impact on healthcare are still un-
known. To address this gap, in addition to proposing a new
method for ECG classification, we integrated our methodol-
ogy into the emergency unit of a tertiary referral hospital for
research purposes. The primary objective of this system is
not to replace physicians or provide definitive diagnoses for
patients, but rather to serve as a classification/prioritization
tool. Its purpose is to identify patients requiring immediate
care and initiate appropriate diagnostic measures. By imple-
menting this system, the efficiency of screening services in
Emergency Units can be significantly enhanced, given the
high volume of daily patients. Additionally, it can be utilized
to identify problematic exams, such as those involving lead
swaps.

Given the increased cardiovascular risk associated with
atrial fibrillation, prioritizing patients with this condition in
emergency units is highly desirable. Therefore, we developed
a system that utilizes our ECG classification methodology to
provide physicians in the emergency unit with a prioritized
list of exams, giving higher priority to exams classified as
atrial fibrillation.

In clinical settings, the availability of one-dimensional sig-
nals may be limited, as ECG devices commonly store signals
as images. Consequently, the significance of image-based
ECG classification systems is widely recognized. Our model
exhibited exceptional performance on a validation dataset
obtained from an emergency unit, which was subsequently
validated by cardiologists.

Furthermore, the visualization of abnormal changes in var-
ious leads simultaneously by physicians plays a crucial role
in identifying several diseases during ECG examinations. For
example, left ventricle enlargement is characterized by an
increased amplitude of the QRS complex in leads V1 and V6,
among other indicators. To emulate the physician’s approach
and explore the interdependence between leads, our proposed
network architecture incorporates a 3D stack of short leads,
facilitating the detection of abnormalities. Additionally, the
separate utilization of the 2D network on the 10-second DII
lead enables the identification of irregularities in heartbeat
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TABLE 6. Demographic variable analysis for Atrial Fibrillation class.

Configuration Sensitivity Specificity F1-score AUROC Accuracy
(0) No demographic variable 94.532 ± 1.158 98.521 ± 0.212 89.088 ± 1.174 99.050 ± 0.239 98.213 ± 0.164
(1) All demographic variables 95.172 ± 1.180 98.488 ± 0.183 89.300 ± 0.873 99.088 ± 0.083 98.255 ± 0.175

(2) Gender and Age 94.785 ± 1.176 98.631 ± 0.203 89.775 ± 1.283 99.038 ± 0.213 98.325 ± 0.183
(3) Gender and Ethnicity 95.318 ± 0.835 98.484 ± 0.232 89.363 ± 1.316 99.163 ± 0.192 98.238 ± 0.200

(4) Age and Ethnicity 94.797 ± 1.521 98.533 ± 0.198 89.313 ± 0.890 99.100 ± 0.169 98.238 ± 0.141
(5) Gender 94.940 ± 0.845 98.572 ± 0.120 89.575 ± 1.042 99.025 ± 0.260 98.288 ± 0.141

(6) Age 95.154 ± 1.107 98.545 ± 0.237 89.575 ± 1.491 99.175 ± 0.175 98.275 ± 0.225
(7) Ethnicity 95.185 ± 0.936 98.492 ± 0.140 89.313 ± 1.093 99.113 ± 0.125 98.225 ± 0.175

TABLE 7. Demographic variable analysis for Normal class.

Configuration Sensitivity Specificity F1-score AUROC Accuracy
(0) No demographic variable 84.707 ± 3.195 87.458 ± 1.198 71.525 ± 0.822 93.113 ± 0.569 86.938 ± 0.444
(1) All demographic variables 85.207 ± 1.697 87.093 ± 0.634 71.300 ± 0.355 93.188 ± 0.327 86.725 ± 0.282

(2) Gender and Age 86.411 ± 1.923 86.397 ± 0.724 71.100 ± 0.727 93.238 ± 0.453 86.413 ± 0.458
(3) Gender and Ethnicity 86.917 ± 3.149 86.318 ± 1.623 71.250 ± 0.758 93.275 ± 0.480 86.425 ± 0.789

(4) Age and Ethnicity 85.415 ± 2.297 87.197 ± 0.655 71.538 ± 0.761 93.350 ± 0.518 86.850 ± 0.220
(5) Gender 87.436 ± 2.247 86.267 ± 0.859 72.225 ± 2.081 93.463 ± 0.518 86.500 ± 0.447

(6) Age 86.601 ± 1.669 86.654 ± 0.605 71.525 ± 0.526 93.375 ± 0.276 86.663 ± 0.283
(7) Ethnicity 87.097 ± 1.072 86.309 ± 0.514 71.338 ± 0.825 93.338 ± 0.220 86.463 ± 0.297

TABLE 8. Demographic variable analysis for Others class.

Configuration Sensitivity Specificity F1-score AUROC Accuracy
(0) No demographic variable 84.137 ± 1.368 87.785 ± 2.206 89.188 ± 0.503 92.900 ± 0.407 85.150 ± 0.450
(1) All demographic variables 83.696 ± 0.625 88.347 ± 1.184 89.013 ± 0.290 92.938 ± 0.311 84.950 ± 0.307

(2) Gender and Age 83.158 ± 0.922 89.025 ± 1.510 88.825 ± 0.369 93.050 ± 0.351 84.725 ± 0.406
(3) Gender and Ethnicity 82.848 ± 1.939 89.522 ± 2.271 88.713 ± 0.788 93.038 ± 0.350 84.650 ± 0.886

(4) Age and Ethnicity 83.834 ± 0.685 88.496 ± 1.716 86.125 ± 0.212 93.138 ± 0.507 85.100 ± 0.177
(5) Gender 82.943 ± 0.865 89.774 ± 1.706 88.838 ± 0.346 93.175 ± 0.413 84.788 ± 0.356

(6) Age 83.239 ± 0.579 89.279 ± 1.109 88.900 ± 0.283 93.100 ± 0.262 84.875 ± 0.243
(7) Ethnicity 82.887 ± 0.559 89.612 ± 0.864 88.775 ± 0.249 93.075 ± 0.243 84.725 ± 0.260

rhythm. This architecture enhances the versatility of the pro-
posed model, enabling its application across different ECG
configurations

The assumption underlying the test set is that it adequately
represents the data encountered in various contexts, thereby
enabling future generalizability. However, when deploying
the system, there is a risk that clinicians may overestimate the
model’s accuracy, potentially leading to patient harm if the
proposed system fails to exhibit robust generalization. It is
well-known that performance usually drops when models are
tested on other datasets [30], [31]. Despite the CPSC dataset
comprising data collected from hospitals in China, our model
still achieved favorable results. This successful performance
on a distinct dataset demonstrates the model’s capacity to
generalize effectively.

An inherent limitation of current AFib detection algo-
rithms is their primary focus on distinguishing AFib from
normal rhythms, disregarding other types of arrhythmias or
cardiac conditions within different categories. In this study,
we specifically defined three classes: Normal, AFib, and
Others. As a result, our investigation solely revolves around
identifying these three classes. We are building a curated
ECG data set to expand the scope by including a larger
number of classes. Moreover, it is important to acknowledge
that patterns learned from datasets employing complex ma-
chine learning algorithms may not inherently convey precise

and easily understandable knowledge. In the context of AFib
classification, it becomes crucial to determine whether the
prediction of "AFib" is linked to relevant clinical information
rather than unrelated characteristics that happen to correlate
with the predicted class.

In the field of one-dimensional signals, the SHAP method
was utilized by [12] to visualize significant segments of
ECG signals. This approach proved helpful in identifying
AFib and other cardiac conditions, aligning with standard
ECG interpretation and the Grad-CAM method for image-
based ECG classification has also been used [7]. Unfortu-
nately, the latter study failed to establish clear connections
between the interpretations and specific cardiac conditions.
Given the increasing concerns surrounding the use of black-
box systems in critical domains like medicine [32], [33],
future research will focus on enhancing the interpretability of
ECG classification models. Furthermore, while incorporating
demographic information into automatic ECG classification
systems has been suggested [23], our findings indicate that
the inclusion of these variables did not improve results for the
classes examined in this study (Atrial Fibrillation, Normal,
and Other), as shown in Tables 6, 7, and 8. Nevertheless,
we acknowledge that demographic variables may hold im-
portance for new classes, and we plan to conduct further
investigations in this area in future studies.

In conclusion, we have successfully developed a robust
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and versatile artificial intelligence image-based ECG classi-
fication system. This system has been integrated into an end-
to-end framework, enabling its utilization in emergency room
settings for screening 12-lead ECG exams.
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