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Abstract
For years, cardiovascular diseases have been the leading 

cause of death worldwide, bringing on important social and 
economic consequences. Given this scenario, the search for 
a method capable of diagnosing coronary artery diseases in 
an early and accurate way is increasingly higher. The coronary 
computed tomography angiogram is already widely established 
for the stratification of coronary artery diseases, and, more 
recently, the computed tomography myocardial perfusion 
imaging has been providing relevant information by correlating 
ischemias and the coronary anatomy. The objective of this 
review is to describe the evaluation of myocardial ischemia 
by multiple detector computed tomography. This study will 
resort to controlled clinical trials that show the possibility of a 
single method to identify the atherosclerotic load, presence 
of coronary artery luminal narrowing and possible myocardial 
ischemia, by means of a fast, practical and reliable method 
validated by a multicenter study.

Introduction
Cardiovascular diseases are the leading cause of death 

worldwide, bringing on important social and economic 
consequences. Data from the World Health Organization 
(WHO) points out that, in 2012, 17.5 mn people died of 
Cardiovascular Diseases (CVD) all over the world, 7.4 mn 
of ischemic heart diseases, and 6.7 mn of cerebrovascular 
accidents. Also according to WHO, heart ischemic diseases 
are the main death cause in countries with high income and 
low average income, while, in high average income countries, 
Cerebrovascular Accidents (CVA) are the main death cause, 
followed by CVD.  In turn, in low income countries, respiratory 
diseases rank first, followed by HIV/Aids, while CVD is in the 
fifth place in the list1. 

Currently, we have several noninvasive methods 
to evaluate myocardial perfusion, such as the color 
Doppler echocardiography (ECHO), myocardial perfusion 

scintigraphy (SPECT), Cardiac Magnetic Resonance 
Imaging (MRI), and, more recently, the Computed 
Tomography Myocardial Perfusion Imaging (CTP).

The use of these methods allows the noninvasive 
stratification of Coronary Artery Diseases (CAD) and their 
functional diagnosis, while the anatomic association and 
computed tomography perfusion allow a proper therapeutic 
plan specific for each group of patients.

The Coronary Computed Tomography Angiogram (CTA) 
allows detecting significant coronary artery disease with high 
sensitivity and specificity 2-9, and the main recommendation 
is to eliminate major luminal narrowing in patients with 
intermediate likelihood of CAD10. However, the ability to 
identify the coronary lesions that cause ischemia is limited11-13; 
although identification is of utmost importance, as the 
myocardial revascularization is associated with the reduction 
of mortality and reduction of major cardiac events when 
the coronary artery luminal narrowing is associated with 
myocardial ischemia14-18. 

As published in 2007, in the COURAGE study  (Clinical 
Outcomes Utilizing Revascularization and Aggressive Drug 
Evaluation Trial), the percutaneous coronary intervention 
did not lead to reduction of mortality or nonfatal myocardial 
infarction compared to the optimized drug therapy if the 
decision-making was based on the lesion severity19.

Given this scenario, CTP will be ever more present in the 
clinical practice. Considering the need to always provide the 
best care for patients, the search for a method capable of 
evaluating both anatomy and myocardial ischemia is of great 
interest. Currently, several prospective studies underway, along 
with those already published, reveal that this evaluation is 
possible with multiple detector computed tomography. 

With this review, we sought to underline the importance 
of computed tomography myocardial perfusion imaging due 
to its potential to evaluate, in a single test, both the coronary 
anatomy and the myocardial perfusion, adding information 
which is capital for investigating CAD and defining the 
therapeutic strategy.

Diagnosis of Myocardial Ischemia
The early diagnosis by clinical evaluation of the risk factors 

associated with noninvasive diagnostic methods is capital for 
the CAD management. This association helps arranging reliable 
information regarding the anatomical and functional diagnosis 
of obstructive coronary disease, along with appropriate clinical 
and therapeutic planning. 

Both the coronary computed tomography angiogram and 
the invasive coronary angiography (ICA) provide anatomical 
data of the coronary arteries, although they cannot help 
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detecting if the coronary artery luminal narrowing leads to 
hemodynamic repercussion.  Currently, the evaluation of 
myocardial ischemia is feasible by means of FFR studies 
(fractional flow reserve by catheterization) or by noninvasive 
methods, such as myocardial perfusion by cardiac magnetic 
resonance imaging, ECHO with stress and myocardial 
perfusion scintigraphy with stress, and, recently, FFR-CT 
(DeFACTO Study), which is the evaluation of coronary artery 
flow reserve by computed tomography20.

The quantification of the ischemia severity and length 
has important prognostic value16. In the clinical practice, 
a significant number of CTA tests with moderate stenosis 
have been found to need complementary functional tests, 
such as CMRI or SPECT. This fact has been encouraging 
the development of noninvasive methods that evaluate the 
anatomy (stenosis) and myocardial perfusion (ischemia) in a 
single test21. 

Computed Tomography Myocardial Perfusion Imaging
CTA is a noninvasive method to evaluate obstructive 

coronary diseases, characterizing the degree of stenosis and 
the presence of atherosclerotic plaques, evaluating not only the 
lumen, but also the vessel wall, with plaque characterization. 
In the literature, detecting significant obstructive coronary 
diseases (luminal  narrowing > 50%) by CT shows a good 
accuracy with high sensitivity (82% - 99%) and specificity 
(94% - 98%) compared to ICA22-25. In these studies, the high 
Negative Predictive Value (NPV) of the method (95% - 99%) is 
relevant, insofar as it is useful to eliminate obstructive coronary 
disease, which makes of CTA an excellent tool for noninvasive 
evaluation of coronary arteries. CTA was ultimately validated 
versus ICA by multicenter clinical studies26-27. 

Technical requirements to perform CTP
The patient’s preparation is similar to that necessary in other 

myocardial perfusion methods with pharmacologic stress, 
which may use dipyridamole, adenosine or regadenoson 
(selective A2A adenosine receptor agonist, still unavailable in 
Brazil for clinical use). Patients should be instructed about the 
restriction of food with caffeine and/or xanthines, nonselective 
competitors of the adenosine receptor in the patients to be 
subject to pharmacological stress. For the injection of contrast 
and vasodilator, two antecubital venous accesses are necessary, 
preferably 18 gauge, allowing the infusion at speeds higher 
than 5 mL/s.  Usually the a adenosine (140 mcg/Kg/min) is 
injected under continuous monitoring over 2 - 3 minutes26-32, 
but longer injections of 5 - 6 minutes have already been 
tested33-35.

The administration of oral and intravenous beta-blocker 
should be considered to reach a rate of 60 bpm, in an attempt 
to mitigate the movement artifacts in the protocols in which 
the rest phase precedes the stress. Some authors refrain from 
using it due to the possibility of hiding the ischemia in the 
myocardial perfusion. However, in accordance with recent 
studies, no effect in the coronary reserve has been revealed 
by pharmacological stress studies with SPECT and CTP35-38. 
In view of this, the use of beta-blocker should be considered 
to facilitate the acquisition of data with better image quality. 

Acquisition parameters and methods
CTP usually comprises two phases, namely rest and stress, 

not necessarily in this order. The main advantage of firstly 
conducting the rest phase would be the possibility of ruling 
the stress phase out for patients with coronary arteries without 
obstructive lesions. In turn, the performance the stress phase 
before the rest phase would allow a better detection of the 
myocardial ischemia, with an improved differentiation between 
ischemic and nonischemic myocardium.

In 320 slice scanners, the image acquisition should be 
performed with the tube voltage at 120kV, tube current at 
300 - 500 mAs (depending on the patient’s BMI) resorting 
to prospective acquisition with coverage of 70% - 95% 
of R-R  interval27,33,36. In dual source scanners, several 
acquisition protocols have been described26,28-32,34,39,40.  
In second‑generation dual source scanners, the prospective 
axial and spiral acquisition in  high pitch (flash mode) 
were used instead of the retrospective acquisition of the 
first‑generation apparatuses. The dynamic acquisition in 
the shuttle mode (quick movement from the scanner table 
between two positions covering the entire heart)28,30,32,39,41-43 
is an alternative more and more investigated. Additionally, 
dual source systems allow performing dual energy CT to 
evaluate the myocardial perfusion defects27,34,40, with a tube 
acquiring 140 kV images, and the other, 80 kV34,40.

The development of new scanners with multiple detectors 
allowed the performance of CTP, with radiation doses at quite 
low levels. The 64-channel scanners generation is limited to a 
coverage of 4 cm, demanding several gantry rotations to cover 
the entire heart, demanding 5 - 8 heartbeats and an apnea 
period of 8 - 10 seconds (radiation dose of up to 16.8 mSv44). 
The new 320 detector row scanners allow a coverage area of up 
to 16 cm, allowing the evaluation of the entire heart in a single 
gantry rotation and an apnea of 1 to 2 seconds without the need 
to move the table (average radiation dose of 5.4 mSv36). The 
second dual source generation has a gantry with two X-ray tubes 
at a 90 degree angle with two corresponding detectors, resulting 
in a higher time resolution (75 ms) and spatial resolution of 0.3 
to 0.4 mm, allowing a fast acquisition with low heart movements 
and reducing the artifacts. The acquisition may be performed 
with table spiral or shuttle modes, and may reach the radiation 
dose of 1 mS45, using the high pitch technique. 

During the rest phase, 60 to 70 mL of iodinated contrast 
are administered at 5 mL/s and the image acquisition is 
performed in keeping with the preset protocol (prospective 
or retrospective). For the stress phase, the adenosine infusion 
starts at 140 mcg/Kg/min until the 5th minute, and, in the case 
of the dipyridamole, a dose of 0.56 mg/kg/min is injected at 
4 minutes.  Once more, 60 to 70 mL of contrast is administered 
at 5 mL/s, except for 64-detector row scanners, in which 
injection should be made at 3 mL/s to keep a higher contrast 
homogenization in the left ventricle over the entire acquisition. 
The image acquisition starts when the contrast attenuation 
at a specific spot reaches a present amount, for instance, 
300 HU in the descending aorta. It may also be performed 2 
to 4 s after the contrast peak, which is ascertained with the 
bolus test of 10 to 15 mL followed by 20 mL of saline solution 
(Figure 1 and Figure 2).
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Figure 1 – CTP protocol with rest phase followed by stress phase.
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Figure 2 – CTP protocol with stress phase followed by rest phase.

 

 

 

20 minutes

Analysis of the images
The detection of myocardial detection is possible, as the 

iodinated contrast has a property capable of attenuating the 
X-rays proportionally to the concentration in the myocardium. 
The images are acquired over the first contrast pass in the 
coronary arteries and myocardium during rest and stress with 
vasodilator. In the absence of artifacts, the reversibility or 

persistence of perfusion defect between stress and rest allows 
differentiating infarction and ischemia. A third late phase may 
be performed, allowing the evaluation of myocardial viability 
(late enhancement).

The analysis of the myocardial perfusion images includes the 
side-by-side analysis of stress and rest images. The stress‑induced 
myocardial ischemia is defined as the hypoattenuation in 
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Figure 3 - CTP model correlating the ischemic area with SPECT and ICA. (A) SPECT: Short axis image of the normal rest perfusion, on the lower line, and presence of 
inferolateral myocardial perfusion defect (white arrow) after pharmacological stress; (B and C) CTP: Stress hypoperfusion in anteroseptal and inferolateral wall (white 
walls); (D) Curved reformation image of the circumflex artery with occlusion of the proximal segment; (E) Curved reformation image of the anterior descending artery with 
important proximal luminal narrowing; (F) CTP: Short axis rest perfusion showing minor inferolateral perfusion defect (white arrow); (G) ICA: Right anterior oblique image 
showing important luminal narrowing in DA and occlusion of Cx in the middle segment with distal filling via collateral circulation.

territory compatible with coronary arteries segmentation in 
images under vasodilator stress, without late enhancement 
in images of viability or hypoperfusion at the rest phase30,46

The qualitative interpretation of the myocardial perfusion 
has been used in most clinical trials by now, resorting to 
simultaneous comparison of rest and stress images (Figure 3). 
The images are generally interpreted using an image adjustment 
(Window-200/Level-100 or 300/150) and an average thickness 
of 3 to 5 mm (MPR thick) in short axis view27,28,30-32  .

Using the 17 segment model of the American Heart 
Association classifying the segments with presence or absence 
of perfusion defects is possible, grading them in transmural, 
if any, > 50% of the myocardium and nontransmural or 
subendocardial (< 50%), depending on the length of the 
affected myocardium28,32,36 . The reversibility defects are 
graded in each segment as follows: 0 = none; 1 = minimum 
(up to 1/3 of the myocardium thickness); 2 = partial (1/3 up 
to 50% of the myocardial thickness); 3 = full32,36  (> 50% of 
the myocardial thickness)47. All defects are analyzed in multiple 
phases to ascertain if it is an actual perfusion defect or artifact33

Clinical Trials
CTP has been evaluated in a number of centers21,28,30–33,36,41,44, 

48-51. The sensitivity ranges between 79% and 97%, and the 
specificity, from 72% to 98%, depending on the device used, 
reference standard, population studies, and if the analysis is per 
patient, segment or coronary territory. Recent studies evaluated 
the accuracy of CTP using devices with one or two X-ray sources, 
with limited longitudinal coverage21,28,32,44, 48,49.

SPECT was chosen as the standard method in most 
studies21,28,32,43,44,48,49,51  given that it allows a high prognostic 
value if used along with ICA17 (Table 1 and Table 2). However, 
in multivessel patients its accuracy is limited as the technique 
consists in identifying perfusion differences between contiguous 
myocardial territories, hampering the detection of multivessel 
diseases. To overcome this methodological limitation, several 
independent analyses were performed to allow ascertaining the 
CTP role for multivessel diseases as well. Because of this, recent 
studies have been choosing methods that are less influenced by 
the presence of ischemia in contiguous territory, such as CMRI 
and coronary flow reserve (FFR) as a more appropriated 

Table 1 – CTP compared to coronary angiography

Author Number of 
patients Scanner Protocol Radiation Dose

(mSv) Sensitivitya Specificitya PPVa(%) NPV a(%)

Rocha-Filho 
et al. 35 Dual-source 

(2x32)
Stress: Retrospective

Rest: Prospective
Stress: 9.8 ±4.5
Rest: 2.0±0.7 91 91 86 93

Bamberg 
et al. 33 Dual-source 

(2x64)
Stress: “shuttle mode”

Rest: Prospective
Stress: 10.0±2.0

Rest: 3.1±1.0 93 87 75 97

Ko et al. 42 320 detectors Stress: prospective
Rest: prospective

Stress: 5.3±2.2
Rest: 4.8±2.6 68 98 97 77

PPV: positive predictive value; NPV: negative predictive value. a: Combination of CTA and CTP to ascertain the diagnostic accuracy to evaluate the vessel.
Source: Modified table of Schuhbäck et al.35
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Cury et al.21,52 compared the pharmacological stress perfusion 
technique using dipyridamole by 64 detector row CT to evaluate 
the myocardial ischemia with SPECT. Using obstructive lesions 
more than 70% diagnosed by ICA as reference for anatomical 
confirmation and correlation of lesion with myocardial 
ischemia areas diagnosed by both methods (tomography and 
scintigraphy), the values of sensitivity, specificity, PPV and NPV 
for stress perfusion by tomography were 88%, 79%, 66% and 
93%, respectively, without significant difference compared to 
the myocardial scintigraphy data (Table 2).

Magalhães  et al.53 compared the additional value of perfusion 
under pharmacological stress with dipyridamole by computed 
tomography with 64 detector rows versus the independent 
anatomical evaluation by CTA in patients with stents, adopting 
ICA as reference (≥ 50%). The evaluation of the independent 
CTA presented sensitivity, specificity, NPV, PPV and accuracy 
in the territories with stent of 85%, 77%, 87%, 74% and 81%, 
respectively. After the use of CTP, the diagnostic performance 
was 88%, 95%, 97%, 81% and 91%, respectively (p = 0.0292). 
In territories with limited or inappropriate evaluation of stent the 
performance diagnosed by the independent CTA was 83%, 72%, 
79%, 76% e 77%, respectively, and, when associated with CTP, 
reached 87%, 94%, 95%, 85% and 91%, respectively, p = 0.036), 
showing an improvement in the accuracy to detect significant 
coronary artery stenosis in patients with stent. 

Rochitte et al.54 presented the first international multicenter 
study, of prospective character, using computed tomography 
myocardial perfusion imaging (CORE 320 study). This 
study compared CTA combined with CTP to detect 
hemodynamically significant stenoses defined by the combination 
between ICA and SPECT. All patients have been referred to 
ICA to investigate suspected or known CAD, and previously 
subject to CTA, CTP and SPECT before ICA. The results 
showed that CTP improved the diagnostic power of CTA,  if 
seen independently (AUC of ROC curved was increased from 
0,82 to 0,87 when resorting to the combination CTA + CTP 
to detect hemodynamically significant stenosis), especially in 
individuals without previous CAD, in which the AUC of ROC 
curve reached 0.93. The study also revealed that CTA + CTP 

has the same power to identify patients who would need bypass 
grafting within 30 days after the performance of standard strategy 
(ICA + SPECT). It also underlined the possibility of evaluating 
the myocardial anatomy and perfusion by a single test, in a 
noninvasive manner. Independent ICA detected obstructive CAD 
in 59% of the patients, although, when associated with SPECT, 
this was reduced to 38%.

The incremental value of CTP to improve the accuracy of CTA 
to detect stenoses ≥ 50% in ICA was evaluated in 35 patients with 
high risk of CAD using MDCT with double source. The authors 
showed an increase of sensitivity from 83% to 91%; specificity, from 
71% to 91%; and ROC curve from 0.77 to 0.90 (p < 0.005)28. 

Qualitative and quantitative analysis of ischemia
CTP may be interpreted in a qualitative and quantitative 

manner. The methods published in the literature for quantitative 
evaluation include the Transmural Perfusion Ratio (TPR), obtained 
by static acquisition21,44 (Figure 4), and the calculation of Fractional 
Flow Reserve (FFR), obtained by dynamic acquisition55.

The transmural perfusion ratio is calculated by the average of 
density in Hounsfield Units of subendocardium divided by the 
average of the subepicardial density of each myocardial segment 
defined by the American Heart Association. This ration showed 
that CTP is capable of detecting and quantifying perfusion defects 
compared to SPECT, in addition to presenting an excellent 
accuracy identifying perfusion defects after pharmacological stress 
and significant coronary artery obstruction by ICA.

The calculation of fractional flow reserve is made by the 
real time dynamic acquisition, whereby the myocardial iodine 
attenuation time curve is obtained, differentiating the iodine 
kinetics in the remote and ischemic myocardial, and obtaining 
the estimated FFR by mathematical calculation.

FFR presented strong correlation with ischemic territories by 
SPECT, magnetic resonance imaging and with the presence of 
significant obstructive coronary artery disease by invasive coronary 
angiography associated with the fractional flow reserve (FFR)41.

Both methods are promising tools for the quantitative analysis 
of CTP but need validation in multicenter studies.

Table 2 – CTP compared to the myocardial perfusion scintigraphy

Author Number of 
patients Scanner Protocol Radiation Dose

(mSv) Sensitivity Specificity PPV (%) NPV (%)

a Cury et al.21,53 26 64 Stress: Retrospective
Rest: Retrospective Total: 14.4±2.9 94 78 89 87.5

b Cury et al.21,53 36 64 Stress: Retrospective
Rest: Retrospective

Stress: 3.4±0.3
Rest: 11.6±2.3

CT: 69
SPECT: 64

CT: 89
SPECT: 77

CT: 81
SPECT: 66

CT: 81
SPECT: 76

c Wang et al.47 30 Dual Source 
(2x64)

Stress: “shuttle mode”
Rest: prospective

Stress: 9.5±1.3
Rest: -

Total: 12.8±1.6
85 92 55 98

d Blank-stein 
et al.32 33 Dual Source

(2x32)
Stress: Retrospective

Rest: Prospective
Stress: 9.1±3.9
Rest: 2.0±0.6 84 80 71 90

PPV: positive predictive value; NPV: negative predictive value. a: Comparison between CTP and SPECT in the analysis per patient. b: Comparison between CTP and 
SPECT in the evaluation per territory, using CTA as reference. c: Comparison between CTP and SPECT in the evaluation per segment. d: Comparison between CTP 
and SPECT in the evaluation per affected vessel. Source: Modified table of Schuhbäck et al.35
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Technical Limitations
The main limitations connected to CTP are the image 

artifacts, exposure to ionizing radiation and higher volume 
of contrast injected. The myocardial attenuation may be 
affected by movement artifacts and beam hardening artifacts, 
and may overestimate the perfusion defects. In a study by 
Wang et al.46, nearly half of the false positive defects was 
located in the basal segment, but frequently affected by beam 
hardening artifact, which is the result of the presence of contrast 
in the left ventricular cavity and aorta35. False negative results 
may be connected to an ineffective dose of vasodilator and the 
patient’s respiratory movement artifacts29, a small ischemia area 
or the inappropriate adjustment of width and level. Besides 
the limitation of the radiation, new acquisition protocols 
have been diminishing the exposure to effects of the ionizing 
radiation. Recent studies have been showing that the total dose 
during CTA/CTP is similar to that of the rest/stress myocardial 
perfusion scintigraphy (13.8 ± 2.9 mSv and 13.1 ± 1.7 mSv, 
respectively, p = 0.15)32,36,56. 

Conclusion
The combination of the coronary computed tomography 

angiogram with computed tomography myocardial perfusion 
imaging allows the simultaneous identification of the 

atherosclerotic load, presence of  coronary luminal narrowing 
and possible myocardial narrowing by a fast, practical and 
reliable method, validated by a multicenter study. By combining 
anatomical and myocardial perfusion information in a single test, 
a better therapeutic approach to patients is possible, resulting in 
an optimized clinical management.
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