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Abstract

Essential hypertension is an extremely prevalent disorder
in western societies and thus, has received a great deal of
attention by the research community.  Hypertension is a
polygenic and multi-factorial disorder, and transgenic animals
have been very helpful in studying specific systems and
their implication in hypertension.  Because the renin-
angiotensin system has a strong impact on the control of
blood pressure both in the short and long term, it has been
one of the most extensively studied physiological systems.
Nevertheless, despite decades of research, the specific
mechanisms implicated in its action on blood pressure and
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The renin-angiotensin
system

The renin-angiotensin system (RAS)
consists of an enzymatic cascade in
which renin, an aspartyl protease,
cleaves angiotensinogen to form the
decapeptide angiotensin I (Ang I).  Ang

electrolyte balance, as well as its integration with other
cardiovascular pathways remains incomplete.  Recently,
the production of transgenic models either over-expressing
or knocking-out specific components of the renin-
angiotensin system has given us a better understanding of
their role in hypertension.  In addition, recent attention has
turned from the endocrine to local tissue renin-angiotensin
systems and their physiological effect on blood pressure
and end-organ damage.  Herein, we will review studies
using genetic manipulation of animals to determine the role
of the endocrine and tissue renin-angiotensin system in
hypertension.

I is further cleaved by angiotensin-
converting enzyme (ACE), a dipeptidyl
carboxypeptidase, to produce the
octapeptide angiotensin II (Ang II), the
physiologically active component of the
system.  The actions of Ang II are
stimulated by its binding to specific
receptors (AT-1 and AT-2), classified

by their differential affinities for various
nonpeptide antagonists1.  Both of these
cell surface receptors belong to the
large family of G-protein associated
receptors. These receptors have a wide
tissue-specific distribution, and are both
present in the kidney, brain and adrenal
gland.   In general, AT-1 receptors are
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present in adult cardiovascular tissues
whereas AT-2 is highly expressed
during fetal development2.

Pharmacological studies using
specific antagonists have determined
that most of the physiological actions of
Ang II are mediated through the AT-1
receptor1. Two subtypes of this
receptor, AT-1a and AT-1b, have been
identified in the rat3, mouse4 and an
AT-1b receptor has been reported in
humans5, although it is generally
accepted that humans express only one
type of AT-1 receptor.  These receptor
subtypes are pharmacologically
indistinguishable but are the product of
different genes (Agtr1a and Agtr1b)
that are differentially expressed and
regulated6,7.  Gene-targeting experi-
ments have been useful to determine
the individual role of the AT-1a and
AT-1b in the periphery8,9 and in the
central nervous system10.  Indeed, it
has been shown that AT-1a receptors
are predominantly involved in the
regulation of vascular tone in the
periphery as well as the pressor
response in the central nervous system
(CNS), while the AT-1b receptors
seem to be necessary for the drinking
response to Ang II in the CNS.  On the
other hand, AT-2 receptor function has
not yet been fully determined.  Recent
studies have suggested that it might
oppose the actions of the AT-1 receptor
with respect to blood pressure and
cellular proliferation11-13.  It has also
been suggested that AT-2 receptor
stimulation enhances renal tubular
sodium reabsorption14.

Transgenic animals to
model the endocrine RAS

The TGR(mREN2)27
transgenic rat

One of the most extensively studied
transgenic models is the TGR(mREN2)

transgenic rat which expresses the
murine Ren-2 gene cloned from the
DBA/2J mouse strain15.  They chose
the mouse Ren-2 renin gene because it
had already been characterized in
transgenic mice and was expected to
be highly expressed in certain tissues16.
As expected, these rats highly express
the transgene in the adrenal gland, and
at lower levels in the thymus, small
intestine, testis, ovary, coagulation gland,
kidney, brain, lung, blood vessels,
pituitary and thyroid17. Because
transgene expression in the kidney,
adrenal gland and several brain areas
precedes the development of
hypertension, it has been suggested
that there may be a causal relationship
between expression of renin in those
tissues and the development of
hypertension18.  Interestingly, Ren-2
expression is down-regulated in kidney,
medulla oblongata, and cortex, but not
in the adrenal gland and hypothalamus.
Surprisingly, circulating levels of the
different components of the RAS are
normal or in some cases suppressed in
heterozygous TGR(mREN2)27 rats as
compared to their negative littermates.
The only exception is markedly elevated
levels of prorenin, the inactive form of
renin19. The development of hyper-
tension in these mice is clearly due to
the over-activity of RAS since they can
be treated by ACE inhibitors and AT-
1 receptor antagonist17.  These data
suggest the possibility that the primary
cause of hypertension in this model
may not be due to increased endocrine
RAS, but possibly the result of high
tissue-specific RAS activity.

Recently, high levels of renin have
been detected in the amniotic fluid of
pregnant TGR(mREN2)27 rats20.
Moreover, low birth weight in the
resultant offspring was also reported.
It is interesting to note that epide-
miological studies have lead to the
hypothesis that reduced birth weight
increases the likelihood of cardio-
vascular disease later in life.  Also of

interest in these animals is a marked
sexual dimorphism with respect to the
degree of hypertension.  The effects
appears to be mediated by androgens
since either castration of males or
treating females with androgens can
abolish this effect21.  It has also been
suggested that estrogen may be
protective against hypertension by
amplifying the vasodilator contributions
of angiotensin (1-7) while reducing
the formation and vasoconstrictor
actions of Ang II22.

One particularly interesting
observation is that the severity of
hypertension depends partly upon the
genetic background of the rats used
for maintaining the TGR(mREN2)27.
An accelerated and malignant form of
hypertension occurs when these rats
are bred with a specific strain of
Sprague-Dawley rat, but does not
occur if Lewis rats are used for
breeding23.  Because they were able
to exclude many environmental
factors, this suggests that even when
a specific genetic modification leads
to hypertension, there are other genes
in the background which can modify
the phenotype. Such genetic back-
ground effects have been observed in
numerous transgenic and knockout
models24.

Similar to the TGR(mRen2)27 rats,
transgenic rats having an inducible
form of hypertension using the same
mouse Ren-2 gene but driven by the
cytochrome P450 promoter have been
developed25. In these rats, the
transgene is expressed primarily in the
liver and is rendered inducible by
xenobiotics such as indole-3 carbinol.
The hypertension developed is dose-
dependent and reversible. Indeed, con-
tinuous dietary administration of in-
dole-3 carbinol caused a marked
hypertension, increase in the RAS
activity, and clinical manifestations of
malignant hypertension such as
polyuria and weight loss.  This model
could thus be useful to study the initiation
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events of pathological processes such
as hypertension.  Indeed, if the time of
onset and the extent of hypertension
can be controlled, then the cellular and
molecular events involved in the
initiation of the vascular and organ
injury can be more easily determined.
The two main limitations of this model
are the insertion of the transgene in
the Y chromosome, and the ectopic
production of renin in the liver.

Transgenic models
expressing the human renin
and angiotensinogen gene

In order to try to better emulate
human hypertension, many transgenic
models have used the insertion of
human renin (hRen) and/or angio-
tensinogen (hAGT) in the mouse or
rat genome. Since the renin-angio-
tensinogen reaction is species-specific,
human renin cannot cleave mouse or
rat angiotensinogen and vice versa.
Consequently, both the renin and the
AGT genes are required from the
same species.  In hAGT transgenic
rats, acute and 10-day infusion of
recombinant human renin caused a
significant increase in blood pressure26.
These rats express high levels of hAGT
in the liver, brain, kidney, gastro-
intestinal tract, and aorta whereas rat
angiotensinogen can be detected in
the liver and brain.  Similarly, in double
transgenic rats (dTGR) expressing
both hRen and hAGT genes, the
hypertension observed is dependent
on the human RAS components27.  In
these models, both hRen and rat renin
are physiologically regulated and thus,
are expressed at low levels, probably
as a result of the feedback inhibition
caused by high blood pressure and
Ang II. Long-term treatment with an
ACE-inhibitor and AT-1 receptor
antagonist caused an increase in renin
levels in parallel with the decrease in
blood pressure28.  This is in contrast to
studies done in the TGR(mREN2)27

where there is no affect of ACE
inhibitors on renin levels despite a
concomitant normalization of the
blood pressure29. Endogenous rat
angiotensinogen expression in the
kidney was decreased, and both rat
and hAGT are increased by treatment
with ACE inhibitor and AT-1 receptor
antagonist28.  This in agreement with
previous studies suggesting that
angiotensinogen is regulated by both
Ang II and blood pressure in the
kidney30.

The hypertension that developed
in the double transgenic animals greatly
depends on the Ang II-induced
reduction in sodium and water
excretion, which is intrinsic to the
kidney31.  Both submaximal doses of
ACE inhibitor and AT-1 receptor
antagonist cause a significant decrease
in blood pressure while the use of both
types of drugs together totally
normalizes blood pressure28. In this
model, ACE inhibitors seem to de-
crease blood pressure by increasing
sodium excretion through increased
renal blood flow and glomerular
filtration, rate while AT-1 receptor
blockers seem to decrease tubular
sodium and water reabsorption.

Interestingly, during the breeding
of the hAGT to the hRen rats, female
hAGT rats developed hypertension on
the fifth day of pregnancy32.  Indeed,
the hRen transgene is expressed in the
placenta, which causes a significant
increase in plasma hRen. However,
female hRen transgenic rats bred with
male hAGT exhibited a decrease in
blood pressure, and no plasma hAGT
could be detected in these rats.  Similar
results have been observed in female
hAGT transgenic mice that are mated
with male hRen mice33. Thus these
animals may be good models for the
study of preeclampsia. Recently a
novel mouse model of genetic
preeclampsia was described34.

In addition to rats, many mouse
models expressing human components

of the RAS have been developed.  For
instance, double transgenic mice over-
expressing hAGT and poorly regulated
human renin transgenes (3 kb-hRen
or 0.9 hRen transgenes) are markedly
hypertensive, have elevated levels of
plasma Ang II and have many
hallmarks of hypertensive-induced
end-organ damage including endo-
thelial dysfunction35-39.  When hAGT
mice were mated with mice expressing
larger and better regulated 140 kb or
160 kb hRen transgenes encoded on
P1 artificial chromosomes, plasma Ang
II levels and blood pressure were only
moderately elevated40.  Indeed, hREN
expression in these, and other similarly
generated mice, was restricted to the
kidney, and was appropriately
regulated by physiological stimuli
such as ACE inhibition, Ang II infusion
and high salt diet40,41. Therefore, there
is compensatory down-regulation of
hRen mRNA in these double
transgenic mice, which would account
for the lower blood pressures observed
in them. Contrary to these findings,
double transgenic model containing
the same human angiotensinogen gene
and a 45 kb-hRen transgene were
reported to have normal blood
pressure42. The authors suggested that
the normal pressure measured in these
mice was due to the appropriate
regulation and expression of the renin
transgene.  Indeed, similar to the PAC
hRen mice, the 45 kb-hRen transgenic
mice exhibit transgene expression only
in the kidney, and expression responds
adequately to physiological stimuli.  It
is possible that the authors did not
observe an increase in blood pressure
due to their method of measurement.
A tail-cuff sphygmomanometer, rather
then direct measurement by indwelling
catheter, was used in this study to
assess blood pressure. In our
laboratory, only direct measurement
of blood pressure uncovered the
modest increase in blood pressure
observed in the PAC double transgenic
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mice while no difference could be
detected by tail-cuff43.

Although renin is regulated
appropriately in the double transgenic
mice containing the PAC hRen
transgene, a modest increase in blood
pressure can still be observed.  It has
been suggested that this might be due
to the high levels of hAGT present in
these mice, and that even small
amounts of hRen may be sufficient to
cleave this additional angiotensinogen.
This is further supported by studies
where transgenic mice containing
three and four copies of the endogenous
angiotensinogen gene caused a small
increase in circulating mouse
angiotensinogen which was sufficient
to cause significant increases in blood
pressure44.  Hence, individuals with
elevated angiotensinogen levels might
be predisposed to hypertension.
Genetic evidence suggests that
patients carrying a variant of the
angiotensinogen gene may have
elevated circulating angiotensinogen
and hypertension45.  The same variant
was reported to be linked or associated
with preeclampsia46.

RAS gene knockout
models

Many genes of the RAS have been
knocked out in transgenic animals.
For instance, the complete absence of
angiotensinogen47,48, ACE49,50 or AT-
1a receptors51,52 causes a significant
decrease in blood pressure. In the
case of ACE, it seems that specific
knockout of the tissue-bound ACE
without alteration in the circulation
ACE also causes similar decreases in
blood pressure53.  These results support
the notion that tissue-bound ACE is
critical in the physiologic generation of
Ang II, and are in agreement with
studies showing a lack of correlation
between the hypertensive effect of
ACE inhibitors and circulating levels

of ACE54.  Because the decrease in
blood pressure in the AT-1a knockout
is similar to that of the angiotensinogen
and ACE knockout, it has been sug-
gested that most of the effects on
blood pressure that Ang II exerts is
mediated by the AT-1a receptors.

Mice lacking the AT-1b receptor
have normal blood pressure and thus it
was suggested that this receptor was
not implicated in the regulation of
resting blood pressure9.  However,
studies conducted on the AT-1a
knockout mice uncovered a small
pressor response to Ang II infusion
that could be completely blocked by
losartan, an AT-1 receptor antag-
onist51.   This suggested that the pressor
effect of Ang II in these mice was
mainly due to stimulation of the AT-1b
receptor.  As indicated above, using
AT-1a and AT-1b receptor deficient
mice, we demonstrated that AT-1a
receptors mediate the central pressor
effect of Ang II, while AT-1b receptors
mediate the central dipsogenic effect
of Ang II10.

In contrast, a modest elevation in
blood pressure in mice lacking the
AT-2 receptor has been reported11.
AT-2 receptor deficient mice also
exhibited an increase sensitivity of
blood pressure to Ang II infusion13,55.
These observations provide further
support for the notion that AT-2
receptors counteract the effects of
the AT-1 receptor. These effects may
be important during AT-1 receptor
blockade, when renin and Ang II
dramatically increase.  Indeed, studies
done in AT-1 knockout mice have
demonstrated that captopril admi-
nistration can cause an increase in
blood pressure, presumably by
preventing the production of Ang II
which would bind and activate AT-2
receptors52.  However, Ang II infusion
in these mice did not cause a decrease
in blood pressure as might be expected,
and thus the role of AT-2 receptors
remains controversial and unclear.

Complete absence of individual
RAS components can have profound
effects on blood pressure and
cause lethality thus limiting the use
of homozygous knockout mice.
However, heterozygous knockouts can
provide important tools for the study
of blood pressure regulation.  For
instance, mice that are heterozygous
for null mutations in the angio-
tensinogen44 or AT-1a receptor56

genes have reduced blood pressure,
although not as drastic as in the
homozygous knockouts.  Furthermore,
insertion of a functional angio-
tensinogen gene into the angio-
tensinogen knockout mice restores
blood pressure57,58. In contrast,
heterozygous ACE knockout mice,
which have a 50% reduction in ACE
activity, do not exhibit a decrease in
blood pressure49.  Similarly, increasing
ACE levels by increasing the number
of functional ACE gene copies does
not affect blood pressure59. These
authors thus suggested that arterial
pressure was not influenced by partial
reduction in ACE levels, which is
consistent with the common notion
that ACE is not rate limiting in the
RAS.  However more recently, Carlson
et al. observed a copy-dependent
decrease in blood pressure in mice
with complete or partial deletion of the
ACE gene using radiotelemetry
measurements of blood pressure60.
These results might again, be due to
the higher sensitivity of the technique
used in this study. In previous studies,
tail-cuff50 or acute catheterization61

were used to measure blood pressure.
Both of these methods require
restraints, heating, and/or tethering and
are typically used to measure blood
pressure only during the day, the normal
rest (sleep) period for the mouse, when
arterial pressure is the lowest. Thus,
these methods might not be able to
uncover a smaller variance in blood
pressure that might occur during the
nocturnal period when the mice are
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awake, active and have higher blood
pressure.

Local RAS transgenic
animals and hypertension

Typically, the classic effects of the
RAS, such as increased blood pressure
and blood volume have been thought
to be due to the systemic RAS, where
circulating renin processes circulating
angiotensinogen to ultimately generate
blood borne Ang II, which acts as an
endocrine hormone.  However, in the
last few years, more attention has
been brought to local RAS. Tissue
RAS are defined as existing in tissues
with the capacity for the local
generation and action of Ang II.  All
components of the RAS can be found
in the brain, heart, vasculature, and
kidney among others, and could be
implicated in the specific effects that
have been attributed the systemic RAS.
For instance, it has been suggested
that the intrarenal RAS can regulate
systemic blood pressure and aspects
of renal function such as blood flow
and sodium reabsorption62, whereas
in brain it may facilitate neuro-
transmission and stimulate
vasopressin release and sympathetic
outflow63,64.

Targeting the brain

Our laboratory has produced
models to examine the effect of an
intrinsic RAS in the brain, both in
neurons65 and glia66, and in kidney67,68.
There has been substantial interest in
the brain RAS because of evidence
implicating its contribution to the
hypertensive state in many animal
models such as the spontaneously
hypertensive rat (SHR), DOCA-salt
hypertensive rat, Dahl-salt sensitive
rat, and renal hypertensive rat69,70.
For instance, acute and chronic
intracerebroventricular (ICV) injection

of an ACE inhibitor, angiotensin
antagonist, and antisense oligo-
nucleotides to AT-1 receptors or
angiotensinogen mRNA attenuates the
development of hypertension in
SHR71,72.  Also, we have reported a
significant decrease in blood pressure
with ICV injection of losartan, an AT-
1 receptor antagonist, in double
transgenic mice expressing both hRen
and hAGT73,74.  This effect seems to
be mediated, at least in part, by an
increase in vasopressin since a bolus
injection of AVPX, an arginine
vasopressin inhibitor, caused a greater
decrease in blood pressure in the double
transgenic mice compared to control
mice, whereas hexamethonium, a
ganglionic blocker, caused an equal
decrease in both double transgenic
and control mice.  Similarly, decreases
in blood pressure have been observed
in TGR(mRen2)27 rats with
microinjections of CV-11974, another
AT-1 antagonist, into the RVLM75.

To better assess the role of primary
production of renin and angiotensinogen
in the brain, we developed transgenic
mice expressing hAGT and/or hRen
driven by either the synapsin I (SYN
I) promoter, a neuronal promoter, or
the glial fibrillary acidic protein (GFAP)
promoter, a glial promoter.  Transgene
expression in the GFAP-hAGT mice
occurred mainly in astrocytes in the
brain, but hAGT could also be detected
in neurons in the subfornical organ66.
When crossed with mice expressing
hRen systemically, a 15 mmHg
increase in blood pressure was
observed.  In addition, these double
transgenic mice exhibited an increased
preference for drinking saline.  These
results are in accordance with studies
done in transgenic rats expressing an
antisense RNA against angio-
tensinogen mRNA driven by the
GFAP promoter, TGR(ASrAOGEN),
where a significant decrease in blood
pressure was observed76. We also
produced transgenic mice expressing

hRen under the control of the GFAP
promoter (GFAP-hRen)77. These
transgenic mice expressed hRen in
the brain, specifically in glia, with some
ectopic expression in lung and adipose
tissue, but no detectable plasma hRen.
When these mice were bred with
GFAP-hAGT mice, the double
transgenic animals had an increase in
blood pressure and an increase in
drinking volume and salt intake.  The
increase in blood pressure observed
was normalized by ICV injection of
losartan while the same dose given IV
(intravenous) had no effect. This
suggests that the observed increase in
blood pressure was due to the local
production and action of Ang II in the
brain. This pressor effect may be
mediated by an increase in sympathetic
activity, since hexamethonium, a
ganglionic blocker, caused a greater
fall in blood pressure in the double
transgenic mice than negative
littermates.  This is in contrast with our
previous study using the systemic
hAGT and hRen double transgenic
mice where blood pressure was
significantly lowered by AVP receptor
blocker73.  Taken together, these data
suggest that the mechanisms
underlying increased blood pressure
may differ among models.  Of course,
it is possible that vasopressin release,
and therefore the response to vaso-
pressin receptor blockade, is blunted
in the glial double transgenic mice due
to negative feedback caused by the
increased drinking.

We also produced Syn I-hAGT
transgenic mice, which expressed the
transgene highly in the brain, at low
levels in the kidney and heart, but had no
detectable plasma angiotensinogen65.
The hAGT was present solely in
neurons in the brain. A pressor
response could be observed in these
mice with ICV, but not IV, injection of
purified hRen.  This response could be
prevented by ICV injection of losartan
which suggested an AT-1 receptor-
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dependent role of neuron-derived
AGT in the regulation of blood
pressure. In contrast, when these mice
were bred with the systemic hRen or
the PAC hRen mice,  no increase in
blood pressure could be observed,
although they had an increased salt-
preference.  It is possible that this is
due to low levels of hRen in critical
blood pressure regulation centers in
the brain present in both the systemic
and PAC hRen mice. In contrast,
when the Syn I-hAGT mice were
bred with Syn I-hRen mice they were
moderately hypertensive as well as
had increased drinking volume and
salt preference77.

Recently, we and others have
reported an altered form of renin
mRNA derived from the utilization of
an alternative transcription start site in
the brain78,79.  If translated, this mRNA
would encode an intracellular (non-
secreted) and constitutively active form
of the protein suggesting the possibility
of an intracellular pathway of Ang II
production in the brain. Studies are
presently underway to examine the
regulation of blood pressure and fluid
homeostasis in new transgenic models
expressing this intracellular form of
renin driven by either the GFAP or
Syn I promoters.

Recently, a transgenic mice model
over-expressing the rat AT-1a receptor
driven by the neuron-specific
enolase promoter (NSE-AT1a) was
reported80.  Although these mice had
normal resting blood pressure, they
exhibited an increased sensitivity to
ICV Ang II. Central AT-1 blockade
caused a significant decrease in blood
pressure in the NSE-AT1a mice but
had no effect on their negative
littermates.  This suggests that although
there seems to be increased AT-1
contribution to blood pressure
regulation in these transgenic mice,
particularly effective baroreflex
buffering might prevent hypertension
in this model.

Targeting the kidney

Our laboratory has also produced
a kidney-specific model of hyper-
tension.  We produced transgenic mice
expressing hAGT driven by the kidney
androgen-regulated protein (KAP)
promoter, which is expressed
specifically in the kidney proximal
tubule and is very androgen
responsive68. Elevated hAGT was
observed in urine reflecting its elevated
production in proximal tubule cells and
its release into the tubular lumen.
Double transgenic mice expressing
KAP-hAGT and systemic hRen had
increased blood pressure but normal
circulating Ang II levels67. The
increase in blood pressure could be
induced in the female double transgenic
by treatment with testosterone.
Presumably, high concentrations of
Ang II were present in tubular fluid.
Accordingly, the increased blood
pressure could be reduced by the use
of high concentrations of losartan,
whereas low concentrations of
losartan effectively lowered blood
pressure in the systemic hAGT/hRen
double transgenic mice. This
observation is consistent with the
filtering actions of the kidney, where
only a fraction of the blood is filtered
during a single pass through the
nephron.  Thus, it is possible that an
effective intratubular concentration of
losartan may have been reached with
higher concentrations. Ang II has
direct effects on sodium transport in
the early nephron by stimulating
sodium-hydrogen exchange in
proximal tubule, and indirect effects in
the late nephron by regulating synthesis
of epithelial sodium channels by
aldosterone81. This supports the
hypothesis that hypertension in these
mice may be caused by alterations in
sodium or fluid homeostasis, perhaps
through alterations in these transport
mechanisms. Such affects appear to
be a common underlying mechanism

causing high blood pressure in a
number of human genetic syndromes82.

Conclusions

The use of transgenic animals to
study the RAS has lead to a better
understanding of its importance in
hypertension. Moreover, the recent
demonstration that local RAS exists
and is physiologically active in many
tissues pointed to the importance of
the tissue pathway pf Ang II generation
and action. Further studies will
undoubtedly include the use of tissue-
specific knockouts to dissect the
function of these system in each tissue.
For instance, single intracardiac
administration of a retroviral vector
containing AT-1 receptor antisense
gene causes a prolonged anti-
hypertensive actions in the
spontaneously hypertensive rat83.  Our
laboratory has demonstrated that the
absence of hAGT in the liver, induced
by the use of the Cre-loxP recombinase
system causes a loss of hepatic and
circulating hAGT84. These data
directly demonstrate that extra-hepatic
sources of angiotensinogen do not
significantly contribute to the
circulating pool of angiotensinogen.
Infection of double transgenic mice
containing hRen and a floxed hAGT
transgene with an adenovirus encoding
cre-recombinase (Adcre) reduced
blood pressure significantly85.  Using
cre-recombinase in conjunction with
cell-specific promoters will be of great
use to study role of different tissue
specific RAS components. We are
currently examining mice which
contain tissue-specific deletion of AGT
expression in the kidney, liver and
brain to assess the importance of AGT
production in each tissue. We anticipate
that a better understanding of these
systems might lead to more specific
and accurate treatment of certain types
of human hypertension.
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