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Cardiovascular risk and therapeutic
intervention for the early morning surge in

blood pressure and heart rate
William B. White

Abstract

The incidence of most adverse cardiovascular events
appears to follow a circadian pattern, reaching its peak in
the morning shortly after awakening and arising. The
activities of many physiologic parameters, including
hemodynamic, hematologic and humoral factors, also
fluctuate in a cyclical manner over 24 hours. It has been
suggested that, during the post-awakening hours, the
phases of these cycles synchronize to create an
environment that predisposes to atherosclerotic plaque
rupture and thrombosis in susceptible individuals, thereby
accounting for the heightened cardiovascular risk at this
time of day. Blood pressure (BP) and heart rate are part
of this physiologic process that follows a clear circadian
rhythm, characterized by a fall during sleep and a sharp
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rise upon awakening. This so-called ‘morning surge’ in
BP may act as a trigger for cardiovascular events,
including myocardial infarction and stroke. The clinical
implication of these observations is that antihypertensive
therapy should provide BP control over the entire interval
between doses. For agents taken once daily in the
morning, the time of trough plasma drug levels (and
lowest pharmacodynamic effect) often will coincide with
the early morning surge in BP and heart rate. For these
reasons, chronotherapeutic formulations of drugs and
intrinsically long-acting antihypertensive agents provide
the most logical approach for the treatment of hypertensive
patients since they provide 24-hour BP control from a
single daily dose plus they attenuate the early morning
rise in BP (and heart rate in some instances).
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Circadian variation of BP
The availability of automated, non-

invasive, ambulatory BP monitoring
(ABPM) devices has allowed BP and
heart rate to be measured intermittently
over a 24-hour period (typically at
intervals of 15–20 minutes). These
recordings have demonstrated that, in
most individuals, both BP and heart
rate follow a definite and reproducible
circadian pattern, which tends to be in
synchrony with the individual’s sleep-
activity cycle1. As a consequence, the
normal circadian BP profile is reversed
among night-shift workers, such that
BP is at its highest during the night and
lowest during the daytime.

In the majority of normotensive and
hypertensive subjects, BP is maintained
at its highest level during the daytime
(from about 10 a.m. to 6 p.m.), and then
declines to reach a trough value
between midnight and 3 a.m. A slow
but steady increase in BP is then
observed over the early morning hours,
and may even begin during rapid eye
movement sleep1,2. At approximately
6 a.m., an abrupt and steep acceleration
in BP occurs, coincident with arousal
and arising from overnight sleep. This
morning BP surge from the low night-
time levels to higher daytime levels
continues for 4-6 hours after
awakening3,4 and is characterized by
an increase in systolic BP of
approximately 3 mmHg per hour and
in diastolic BP of 2 mmHg per hour1.
In some cases, there may be a slight
overshoot in BP, resulting in a peak
during the early-to-midmorning
hours2. The 24-hour BP profile shows
little intra-individual variation, even
after an intervening period of several
weeks, as long as the activities
performed on the monitoring days
are quite similar5.

In general, the circadian pattern of
BP among patients with essential
hypertension parallels that of their
normotensive counterparts, but BP is

elevated throughout the entire 24-hour
period6, and the amplitude of the rhythm
may be altered. Nevertheless, there
are exceptions to this rule. Studies
employing ABPM have revealed that
many elderly patients (aged > 70 years)
and African-Americans do not exhibit
a normal nocturnal reduction – or ‘dip’
– in BP7,8. ‘Non-dippers’ have been
defined in the literature as those patients
whose nocturnal decline in BP is < 10%
of daytime levels while if the reduction
in night-time BP is < 10% of daytime
pressure, the patients are known as
‘dippers’9,10. This classification
becomes of clinical relevance, since
non-dippers tend to have more severe
hypertensive target organ damage than
dippers, which may be explained in part
by a higher mean 24-hour BP11-13. The
reduction in BP from day to night also
tends to be blunted among patients with
secondary forms of hypertension and
various other pathophysiologic
conditions2,14.

Factors influencing the
circadian pattern of BP

The interaction of numerous
physiologic systems and external
environmental influences define the cir-

cadian pattern of BP (Table 1)7,8,14-22.
Perhaps the most important of these is
the sympathetic nervous system (SNS),
which regulates BP on a minute-by-
minute basis as well as over the long
term21,23. Serial measurements of
plasma catecholamines over a 24-hour
period indicate that fluctuations in no-
repinephrine and epinephrine levels
correlate closely with the circadian
pattern of BP24. Other indices of
sympathetic activity, such as heart rate,
cardiac output, and peripheral
resistance, also show marked reductions
during sleep which coincide with the
fall in BP. The mental and postural
changes that accompany arousal and
arising from overnight sleep heighten
SNS activity, which probably contributes
substantially to the sharp rise in BP
over the post-awakening hours25.

Another principal determinant of
the circadian pattern of BP is the
diurnal variation in renin-angiotensin-
aldosterone system activity. More
than 30 years ago, Gordon et al.26

demonstrated that plasma renin
activity gradually decreases during the
day, reaching a nadir at 4 p.m., followed
by a gradual increase overnight to a
peak at 8 a.m. Closer examination of
the circadian pattern of plasma renin
activity has since demonstrated that

Table 1 – Parameters influencing the normal circadian pattern of BP.
Adapted from 14

Demographic characteristics: Age > 70 years8

African-American ethnicity7

External factors: Mental/physical activity14

Postural changes
Smoking18

Alcohol ingestion17

Sodium ingestion20

Caffeine ingestion16

Medication (e.g. oral contraceptives)19

Neuroendocrine systems: Sympathetic nervous system21

Renin-angiotensin-aldosterone system15

Plasma cortisol concentrations14

Nitric oxide levels22
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there are more complex variations
over 24 hours rather than a constant
protracted transition between peak
and trough levels. However, the
circadian variation has still been
demonstrated to be a trend towards
an increase during the morning15.
Levels of angiotensin II apparently
follow the same morning increase as
plasma renin activity, though the short
plasma half-life of angiotensin II
makes confirmation more difficult.
Plasma levels of aldosterone follow a
similar circadian pattern to the plasma
renin activity with an increase in
levels during the early hours of the
morning that peak around the time of
awakening15.

Circadian pattern of
cardiovascular events

Cardiovascular events also follow a
circadian periodicity, reaching a peak

during the morning hours1,27,28. In most
people, this coincides with the post-
awakening BP surge described above
and changes in other physiologic variables
that occur upon arising from sleep.

Myocardial infarction. Muller et
al.28 investigated the circadian
distribution of acute myocardial
infarction using data from 703 patients
in the Multicenter Investigation of
Limitation of Infarct Size (MILIS)
study. The time of myocardial
infarction was determined from
elevations in the myocardial band of
the plasma creatine phosphokinase
(CPK-MB method). A statistically
significant circadian rhythm in the
incidence of myocardial infarction was
detected (P < 0.01), peaking between
6 a.m. and noon (Figure 1). In fact, it
was shown that acute myocardial
infarction was three times more likely
to occur at 9 a.m. than at 11 p.m. An
analysis of data from the Thrombolysis
in Myocardial Infarction Phase II

(TIMI II) trial also revealed a higher
incidence of myocardial infarction in
the morning, with 34% of all events
occurring between 6 a.m. and noon29.
Numerous other studies support these
findings30-33. Interestingly, the
administration of beta-blocking agents
in the preceding 24 hours may abolish
this morning excess of myocardial
infarctions29,30.

Myocardial ischemia. Transient
ST segment depression detected by
ambulatory electrocardiographic
(Holter) monitoring has been shown
to be diagnostic of myocardial ischemia
in patients with coronary artery
disease. Use of this technique has also
revealed a circadian pattern in
myocardial ischemia during normal
daily activities34-36. As with acute
myocardial infarction, most ischemic
episodes occurred over the morning
period, the largest proportion within 2
hours of awakening; few episodes
were detected during the night-time.

Figure 1 – The hourly frequency of myocardial infarction onset in 703 patients in the MILIS database as determined by the CK-
MB method (0 represents midnight). The identical data are plotted again on the right to display the relationship between the end
and beginning of the day. A prominent circadian rhythm is present with a primary peak incidence of infarction at 9 a.m. and a
secondary peak at 8 p.m. Copyright © 1985 Massachusetts Medical Society. All rights reserved28.
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This circadian distribution has been
confirmed by 24-hour ST segment
monitoring of patients admitted to the
coronary care unit with unstable
coronary syndromes (acute myocardial
infarction or unstable angina)37.
Significant increases in systolic BP
and heart rate were shown to precede
a majority (73%) of silent ischemic
events detected in a group of men with
coronary artery disease38, suggesting
that increased myocardial oxygen
demand plays a significant role in the
genesis of transient ischemia.

Sudden cardiac death. The
frequency of sudden cardiac death is
also unevenly distributed throughout
the day. A careful analysis of mortality
data from 5,209 patients in the original
Framingham Heart Study database
has demonstrated a pronounced and
significant (P < 0.01) circadian variation
in the occurrence of definite or possible
sudden cardiac death39. Again, the
most vulnerable period was the
morning, specifically between 7 a.m.
and 9 a.m. when the risk of sudden
cardiac death was at least 70% higher
than the average risk during other
times of the day.  A  slightly later peak
(from 9 a.m. to noon) was reported by
Arntz et al.40 in a population-based
analysis of 24,061 consecutive cases
of sudden cardiac death, whereas in
the Massachusetts Death Certificate
Study, Muller et al.41 placed the time
of highest risk at between 7 a.m. and
11 a.m. Correction of the time of sudden
cardiac death according to the time of
awakening showed an increased
incidence within 3 hours of awakening,
suggesting that sudden cardiac death
is not simply associated with the time of
day, but is a function of the physiologic
processes that occur upon arousal from
sleep42.

Ventricular arrhythmia. The
timing of sudden cardiac death is most
likely related to the timing of arrhythmias
such as ventricular fibrillation and/or
tachycardia. Many studies employing

implantable cardiac defibrillators to
detect these lethal rhythm disturbances
have reported a peak incidence of
ventricular arrhythmias (fibrillation,
premature ventricular contractions, and
tachycardia) between 6 a.m. and
noon43-47. An exception is a study by
Wood et al.48 in which the majority of
ventricular tachyarrhythmias occurred
between noon and 5 p.m.

Stroke. There are also numerous
studies showing that individuals are
most prone to cerebrovascular
accidents, including subarachnoid,
ischemic and hemorrhagic strokes, and
transient ischaemic attacks (TIA),
over the morning hours49-57. For
example, the temporal pattern of stroke
onset was determined from data on
the 637 cerebrovascular accidents
reported during the Framingham Heart
Study52. The most common time period
for the onset of a stroke was found to
be in the morning, with  35% occurring
between 8 a.m. and noon. This pattern
was maintained when the data were
analyzed according to stroke subtype
(atherothrombotic brain infarction,
cerebral embolism, or subarachnoid
hemorrhage), although the peak for
intracerebral hemorrhage extended
until the mid-afternoon.

Pathophysiologic bases
for early morning
cardiovascular events

The underlying reasons for the
documented excess of cardiovascular
events in the morning post-awakening
hours have not been fully established.
However, several investigations
suggest that the physiologic responses
related to waking and the beginning of
physical and mental activities might
trigger these events42,58-60. In addition
to BP and heart rate, several other
physiologic factors exhibit a marked
circadian variation typically linked to
the individual’s rest-activity pattern,

including catecholamine levels, platelet
aggregability, fibrinolytic activity and
vascular tone (Figure  2)61.

Neuroendocrine factors. A
number of well-characterized endo-
genous rhythms may be related to the
circadian pattern of cardiovascular
events. Plasma catecholamine con-
centrations have been shown to rise
significantly during the morning waking
hours62, as do plasma renin26 and
cortisol levels63,64. The sensitivity of
the coronary and systemic vas-
culature to catecholamine-induced
vasoconstriction will be amplified by
the concomitant elevation in circulating
cortisol. Increased angiotensin II levels
resulting from activation of the renin-
angiotensin-aldosterone system will also
cause peripheral vasoconstriction.
Interestingly, it has been shown
recently that the normal rise in
production of nitric oxide during the
morning may be disrupted among
patients with hypertension, further
potentiating vasoconstriction22. These
various neurohormonal patterns provide
a plausible explanation for the increased
incidence of myocardial ischemia during
the post-awakening hours. Cate-
cholamines also exert positive inotropic
and chronotropic effects on the heart
and may decrease the threshold for
arrhythmia.

Hematologic factors. The early
morning hours are associated with a
heightened tendency for thrombosis.
Measurements of platelet activity over
a 24-hour period have revealed a sharp
increase in platelet aggregability
between 6 a.m. and 9 a.m., which are
linked to the assumption of an upright
posture62,65. Furthermore, the activities
of tissue plasminogen activator (tPA)
and tissue plasminogen activator
inhibitor-1 (PAI-1) – factors that act
together to maintain fibrinolytic
homeostasis – exhibit inverse circadian
patterns. Levels of tPA  tend to reach
a trough during the morning and a
peak in the evening, whereas PAI-1
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displays a reverse pattern66. The
activity of plasma euglobulin is also
reduced during the morning hours,
further decreasing morning fibrinolytic
activity67. Other hematologic factors
contributing to the theoretical
propensity for thrombus formation in
the morning include an increase in
blood viscosity68 and an elevated
hematocrit69,70.

The vulnerable plaque theory. A
mechanism based on the interdepen-
dency of these various physiologic pro-
cesses has been proposed to account
for the documented high rates of
cardiovascular morbidity and mortality
in the morning (Figure 3)71,72. While the
physiologic responses to awakening
are not harmful to normal individuals (in
fact, many are necessary), they may
have detrimental effects among those
with established hypertension or
cardiovascular disease.

The central culprit for most cases
of myocardial infarction and sudden
cardiac death is coronary artery
thrombosis73. Pathologic and angio-
graphic studies have indicated that
coronary artery thrombus formation
most commonly occurs at the site of a
ruptured atherosclerotic plaque,
although the precise mechanisms
leading to plaque rupture have not
been fully elucidated. It is, however,
reasonable to assume from the morning
preponderance of myocardial in-
farction and sudden cardiac death that
the surge in BP and the various va-
soconstrictor responses prevalent at
this time may promote flow distur-
bances and dynamic changes in shear
stresses, precipitating the rupture of
even small vulnerable atherosclerotic
lesions. Exposed collagen in the fibrous
cap of the plaque may lead directly to
the development of an occlusive

thrombus and acute myocardial
infarction, sudden cardiac death, or
thrombotic stroke. Concomitant in-
creases in blood viscosity and platelet
aggregability coupled with a reduction
in fibrinolytic activity could produce a
hypercoagulable state, further heighte-
ning the likelihood that an otherwise
harmless mural thrombus overlying a
small plaque fissure would propagate
and occlude the coronary lumen.

Alternatively, the thrombus may
develop gradually, causing reduced
blood flow, microemboli and ischemia
or even small necrotic foci. Together
with the electrical instability resulting
from the morning increase in sym-
pathetic nervous system activity, the
threshold for ventricular arrhythmias
may be decreased, especially among
patients with left ventricular hypertro-
phy (LVH). The imbalance in myo-
cardial oxygen demand and supply pro-
duced by the synergistic effects of the
humoral vasoconstrictor factors on the
coronary arteries together with the
sudden acceleration in the rate-pressu-
re product may also lower the threshold
for myocardial ischemia38,74,75.

Chronobiological and
chronotherapeutic
implications for patients
with hypertension

General considerations

Cross-sectional data from studies
using ambulatory BP monitoring
support the importance of 24-hour BP
control among patients with hyper-
tension. As already discussed, hyper-
tensive patients maintain a circadian
pattern of BP, but values are con-
sistently higher throughout the daytime
and night-time compared with nor-
motensive individuals6. Consequently
it is typically necessary to reduce BP
over the entire circadian period. This

Figure 2 – Peak times of human circadian rhythms for individuals with night-time
sleep and daytime activity61. WBC = white blood cells; TSH = thyroid-stimulating
hormone; ACTH = adrenocorticotropic hormone; FSH = follicle-stimulating hor-
mone; LH = luteinizing hormone; NK = natural killer; FEV1 = forced expiratory volume
in 1 s; RBC = red blood cells.
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concept is further borne out by cross-
sectional data from studies utilizing
ambulatory BP recordings. The mean
24-hour BP is a better predictor of
hypertensive organ damage than an
isolated set of office measure-
ments2,76,77. This correlation has been
observed both for measures of cardiac
target organ damage such as LVH78,
and for markers of renal microvascular
disease such as microalbuminuria79.
Mancia et al.80 have also demonstrated
in a longitudinal study that the regression
of LVH in patients with hypertension is
predicted much more accurately by
treatment-induced changes in average
24 hour ambulatory BP than by clinic or
even home-monitored BP readings.

Antihypertensive therapy should
also provide protection at the time of

greatest risk; that is, the morning post-
awakening period when the incidence
of acute cardiovascular events reaches
a peak81. Such an approach to disease
management is known as ‘chrono-
therapeutics’, whereby the use of
medication is synchronized with
circadian physiologic patterns for a
favorable patient outcome. Based on
this principle, patients with hypertension
should be prescribed antihypertensive
agents that will provide smooth and
consistent BP control over 24 hours,
including the vulnerable early morning,
post-awakening period. Attenuating or
blunting the morning surge in BP could,
theoretically, decrease the incidence of
acute cardiovascular events that peaks
at this time, although conclusive
evidence is still lacking.

Chronotherapeutics in
cardiovascular disease – the
role of beta-adrenergic
receptor blockers and
calcium antagonists

Various studies have explored the
impact of conventional antihyper-
tensive therapy on circadian patterns
in cardiovascular events. For example,
treatment with the beta-blockers
atenolol36 and metoprolol82 has been
shown to decrease the number of
episodes of transient myocardial
ischemia that occur during the morning.
Some interesting data from the
Intravenous Streptokinase in Acute
Myocardial Infarction (ISAM) study
also suggest that beta-blocking agents
reduce the morning cardiovascular
risk30. Analysis of the timing of acute
myocardial infarction in the whole
ISAM study population showed a
marked increase in incidence between
6 a.m. and noon compared with other
times of the day, whereas this morning
peak was absent peak among patients
receiving beta-blockers. Similar
findings were observed in the MILIS
study: a circadian rhythm in myocardial
infarction onset was not detected in
patients on beta-blockers28. Other
reports indicate that beta-blockade also
blunts the morning peak in ventricular
tachyarrhythmias83, ventricular ectopic
beats84 and sudden cardiac death85. It
is likely that these beneficial effects of
beta-blockers result from attenuation
of the morning surge in sympathetic
nervous system activity.

The effects of some of the calcium
antagonists on the circadian patterns
of cardiovascular parameters have
also been recently evaluated. A once-
daily, controlled-release formulation
of nifedipine – nifedipine gastrointes-
tinal therapeutic system (GITS) – has
been reported to attenuate the circa-
dian rhythm of myocardial ischemia in
patients with chronic stable angina86.

Figure 3 – Possible interrelationships among physiologic processes that occur
during the morning waking hours and cardiovascular events in individuals with
coronary atherosclerosis71. AMI = acute myocardial infarction; BP = blood pressure;
HR = heart rate; RAS = renin-angiotensin system; SCD = sudden cardiac death; UA
= unstable angina.
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In contrast, analysis of the ISAM
database revealed the persistence of
a morning peak in the incidence of
myocardial infarction in  patients who
were receiving calcium antagonists at
the time of myocardial infarction30.
Although treatment with amlodipine
effectively controls the morning BP
rise in patients with hypertension87,
whether or not this translates into a
reduced incidence of cardiovascular
events at this time of day remains unclear.

The nearly completed Controlled
ONset Verapamil INvestigation of Car-
diovascular End-points (CONVINCE)
study will assess whether the incidence
of fatal or nonfatal myocardial
infarction and stroke, and car-
diovascular disease-related death is
reduced among patients on controlled-
onset extended-release (COER)
verapamil compared with those on a
standard regimen of hydrochlo-
rothiazide or atenolol88. In a prior study
of over 500 patients with hypertension,
COER-verapamil, when administered
at bedtime, lowered heart rate, the
rate-pressure product (Figure 4), and
the rate of rise of heart rate and BP
over the morning post-awakening
hours more effectively than nifedipine
GITS89. Both treatments produced
similar reductions in early morning
and 24-hour ambulatory BP.

Antihypertensive drugs that are
administered once daily have become
increasingly popular in an attempt to
encourage compliance to treatment
and minimize recurrent fluctuations in
BP that may occur with agents that
are taken several times per day90,91.
Once-daily drugs can be administered
in the morning or evening, but it is
possible that taking large doses of
antihypertensive medication in the
evening might cause nocturnal
hypotension (1, 4). In certain sus-
ceptible patients (e.g. the elderly, and
those with established coronary artery
disease, left ventricular dysfunction,
or a previous cerebrovascular event),

excessive reduction of BP during the
night-time may predispose to silent
myocardial ischemia, optic nerve
damage and stroke92-96. Gastrointesti-
nal activity also appears to follow a
circadian pattern, with absorption at
night being lower than during the day.
So, to achieve similar drug levels at
night, a larger dose may have to be
given, which may, in turn, increase the
incidence of side-effects. Thus, for a
number of drugs for the treatment of
hypertension, morning dosing may  be
more appropriate than evening dosing.

One potential consequence of once-
daily morning dosing is that the peak
incidence of cardiovascular events and
the early morning surge in BP coincides
with the time of the trough level of a
particular agent and its lowest phar-
macologic effect. Additionally,
because patients do not take their
medication until they have arisen, BP
control during the vulnerable post-

awakening period is dependent on the
persistence of pharmacodynamic
activity of the dose taken the previous
morning. Thus, it is of critical impor-
tance that once-daily antihypertensive
agent should be effective over the entire
24-hour period between doses.

Studies utilizing ABPM have
shown that achieving adequate BP
control during the morning is
frequently difficult. Some once-daily
antihypertensive drugs do not have
complete 24-hour BP control as they
lose efficacy during the last 4-6 hours
of the dosing interval6. This may
provide one potential explanation for
the relative shortfall of antihyper-
tensive treatment in reducing the
cardiovascular risk in patients with
hypertension: failure to control the
early morning BP surge leaves pa-
tients susceptible to the various car-
diovascular events that occur at this
time.

Figure 4 – Changes from baseline in 24-h rate-pressure product after administration
of nifedipine gastrointestinal therapeutic system (GITS) given in the morning or
COER-verapamil given at bedtime. The study was performed after 4 weeks of stable
therapy. Error bars represent 1 SEM change89.
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Angiotensin II receptor
blockers in
chronotherapeutics

The angiotensin II antagonists now
registered for the treatment of
hypertension are all dosed once-daily
and lower BP by binding to the
angiotensin II subtype 1 receptor in
vascular and cardiac tissue. However,
ambulatory BP monitoring studies have
shown that differences exist among
these agents with regard to their
duration of action, with the antihyper-
tensive activity of some of these agents
declining substantially towards the end
of the 24-hour dosing period.

For example, in a randomized,
double-blind, multinational, placebo-
controlled trial that compared the
efficacy and safety of the long-acting
angiotensin II receptor blocker
telmisartan  versus losartan, significant
differences were observed during the
early morning period97. After 6 weeks

of therapy, all active treatments
produced significant reductions from
baseline in mean 24-hour ambulatory
SBP and DBP compared with placebo
(P < 0.05; Figure  5). However, both
doses of telmisartan were significantly
more effective than losartan at
decreasing ambulatory SBP and DBP
over all monitoring periods (the
daytime, morning, night-time, and in
particular the 18 to 24-hour period
after dosing from the previous
morning) (P < 0.05; Figure 5). In fact,
the mean change from baseline in
diastolic BP 18-24 hours after drug
administration with losartan 50 mg
was not statistically greater than with
placebo (-3.7 mmHg versus -1.3
mmHg, respectively). In contrast,
telmisartan reduced the last 6-hour
ambulatory BP means by 10.7/6.8
mmHg and 12.2/7.1 mmHg, for the 40
and 80 mg doses, respectively (P <
0.05 versus losartan and placebo for
both the systolic and diastolic BP).

Another interesting study by La-
courciere et al.98  evaluated the duration
of action of the long-acting angiotensin
II receptor blocker telmisartan versus
an equally long-acting calcium anta-
gonist amlodipine in 232 patients with
stage I and II hypertension. The efficacy
of amlodipine over 24 hours is well
documented99-101. After 12 weeks of
treatment, telmisartan produced
significantly greater reductions in the
night-time and trough (last 4 hours of
the dosing interval) diastolic BP than
amlodipine (P < 0.05; Figure 6). Further-
more,  patients on telmisartan had
significantly lower ambulatory heart
rates than in those on amlodipine during
the last 4 hours of the dosing period and
between 6 a.m. and noon (P ≤ 0.005),
a finding that may have an important
impact on the heart rate-systolic blood
pressure product in the early morning.

Multiple factors are behind these
findings on circadian BP by the angio-
tensin II receptor blocker. One factor

Figure  5 – Mean changes from baseline in ambulatory systolic BP (SBP) and diastolic BP (DBP) after 6 weeks of treatment with
telmisartan 40 mg, telmisartan 80 mg, losartan 50 mg or placebo once daily. Mean changes are shown for the entire 24-h period,
daytime (6 a.m. to 10 p.m.), morning (6 a.m. to noon), night-time (10 p.m. to 6 a.m.) and the last 6 h of the dosing interval. *P < 0.05
compared with placebo; †P < 0.05 compared with losartan and placebo97.
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is the nature of binding between the
angiotensin II antagonist and the AT1
receptor. In the case of telmisartan, can-
desartan, valsartan, and irbesartan, the
binding is described as insurmountable
(or non-competitive), thus the drug
binds tightly to the AT1 receptor and is
released slowly with a low drug-re-
ceptor dissociation constant102. In addi-
tion, telmisartan is a highly lipophilic
agent (log P [n-octanol/buffer] +3.2),
which may also contribute to its
duration of action. A highly lipophilic
compound will readily permeate the
plasma membrane and, once inside
the cell, bind reversibly to proteins.
This protein-bound drug serves as a
reservoir, allowing the gradual release

of the compound over an extended
period. Because telmisartan has a high
volume of distribution (7 L/kg)103, it
will disperse readily into the tissue
compartment, thereby increasing the
size of the intracellular protein-bound
reservoir.

Conclusions

A variety of biologic functions, such
as BP, heart rate, sympathetic nervous
system activity, vascular tone, platelet
aggregability and fibrinolysis exhibit a
circadian rhythm and may contribute
to the morning peak of cardiovascular
events. Based on the principles of

chronobiology, it would be logical to
assume that antihypertensive therapy
should provide protection during this
period of increased cardiovascular
vulnerability. In addition to the obvious
impact of the catecholamine hormones
directly,  the importance of the genera-
tion of renin, angiotensin II, and aldos-
terone in the early morning period
and its contribution to the early
morning surge in BP has evolved in
the literature. Data from ambulatory
BP trials suggest great potential for
protection against the angiotensin II-
mediated physiologic responses to
awakening that might contribute to
the excess of cardiovascular events
observed around this time.

Figure 6 – Mean changes (±SEM) from baseline in 24-h ambulatory systolic (SBP) and diastolic BP (DBP) after 12 weeks of
treatment with telmisartan 40-120mg or amlodipine 5-10 mg once daily. Mean changes are shown for the entire 24-h period,
daytime (6 a.m. to 10 p.m.), morning (6 a.m. to noon), night-time (10 p.m. to 6 a.m.) and the last 4 h of the dosing interval98. *P < 0.05
for telmisartan compared with amlodipine.
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