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Prevention and treatment of ischemia and
fibrosis associated in hypertensive heart disease
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Abstract

Elevated arterial pressure is a well-established pre-
disposing factor for the development of stroke, hypertensive
heart and peripheral artery disease, as well as for cardiac
and renal failure. Hypertension-induced alterations in cardiac
structure and function manifested as left ventricular
hypertrophy (LVH) associated with impaired coronary
hemodynamics and ventricular fibrosis accounting for this
major risk factor of cardiovascular morbidity and mortality1-

4. Indeed, cardiac enlargement (or LVH) carries a greater
risk than either height of systolic or diastolic pressure1,4.
Furthermore, a large body of evidence attests to the fact that
LVH is a strong independent risk factor for heart failure,
sudden death, ventricular dysrhythmias, and coronary artery
disease5-10. LVH usually begins as compensated hypertrophy,
but it eventually progresses to cardiac failure if arterial
pressure remains uncontrolled 8. However, the mechanisms
underlying the increased risk associated with LVH have not
completely elucidated, although it is likely that a number of

factors may contribute. Since all components of the heart
seem to  affected with LVH (e.g., muscle, vasculature and
interstitium), impaired coronary hemodynamics, ventricular
fibrosis and dysfunction, increased vulnerability to lethal
dysrhythmias, and enhanced coronary atherogenesis might
account for the risk1,3,11-14.

Several metaanalysis have shown that antihypertensive
therapy has greater propensity to reduce stroke death than
death from coronary heart disease15,16, suggesting that
arterial pressure may exert a greater effect on the cerebral
circulation than the coronary. Moreover, this concept
points to role of nonhemodynamic factors that participate
in the development of hypertension related cardiovascular
injury and, therefore, in this risk17. Thus, current goals of
antihypertensive therapy are to prevent or reverse these
additional alterations along with optimal control of arterial
pressure. This review focuses primarily on the strategy for
pharmacological prevention and reversal of myocardial
ischemia and ventricular fibrosis which are also associated
with hypertensive heart disease.
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Hypertensive heart
disease

Hypertensive heart disease (HHD)
is a clinical and pathological entity
associated with sustained increase in
arterial pressure and is characterized
by an increased left ventricular mass,
fibrosis and impaired coronary
hemodynamics1-3,18. The primary
factors responsible for the develo-
pment of LVH are pressure and/or
volume overload, but number of
nonhemodynamic factors including the
pathophysiological effects of catecho-
lamines, components of renin-angio-
tensin-aldosterone system, growth
factors, endothelins, and other peptides
all participate1-3,19-24. It is now well-
established that hypertensive LVH is
characterized by cardiac myocytic
hypertrophy which is associated with
specific biochemical and functional
changes, functional and structural
alteration of the coronary circulation
and ventricular fibrosis3. As a result of
hypertensive LVH, myocardial tension
and oxygen demand are increased,
whereas structural and functional
alterations of coronary circulation
result in diminished blood supply.
Additionally, the interstitial and peri-
vascular fibrosis that accompany LVH
further compromise the coronary he-
modynamics4,13,18.

Numerous studies have demons-
trated that resting coronary blood flow
may be normal in clinical and expe-
rimental hypertensive models25-27.
However, with the introduction of the
concept of coronary flow reserve28, it
is clear that the ability of coronary
vasculature to dilate in response to
certain physiological (e.g., exercise,
ventricular pacing) or pharmacological
(e.g., papaverine, adenosine, dipyrida-
mole) interventions diminishes with
hypertension1,29,30. The diminished
coronary flow reserve (defined as the
difference between coronary flow
during maximal coronary vasodilatation

and basal or resting condition) and
increased minimal coronary vascular
resistance (the vascular resistance
established at maximal vasodilatation)
have been confirmed as the most
notable changes associated with hy-
pertension in number of experimental
and clinical studies, even in asymto-
matic patients with borderline hyper-
tension without echocardiographic
signs of LVH27,29-39. Furthermore,
these parameters have become
extremely useful hemodynamic
indexes to explain the phenomena of
silent ischemia or microvascular angina
that occur in patient with hypertensive
heart disease, especially when epicar-
dial coronary arteries have normal
anatomic appearance11,36-38.

Abnormalities in coronary hemo-
dynamics associated with sustained
hypertension are primarily due to
structural alteration in coronary resis-
tance vessels (vascular remodeling)
manifested as medial wall thickening
and increased wall:lumen ratio,
periarteriolar fibrosis, and decreased
number of small arterioles and
capillaries40,41. The latter response
represents either disproportionate
growth of cardiac myocytes and
coronary vasculature or loss of vessels
without alteration in cardiac myocyte
compartment42. The increased
wall:lumen ratio of coronary resistance
vessels can be attributed to high vas-
cular wall stress reflecting the hyper-
tensive coronary perfusion as well as
to circulating and local growth hormo-
nes (angiotensin II, catecholamines,
platelet-derived growth factor, trans-
forming growth factor)43-46.

It must be emphasized that LVH,
per se, does not impair coronary flow
reserve since coronary reserve rema-
ins normal in physiological LVH in
trained athletes30,47 or may be impaired
even before clinical LVH is demons-
trated in hypertensive patients39.
Furthermore, a study from our
laboratory demonstrated that low doses

of angiotensin converting enzyme
(ACE) inhibitor31 and angiotensin II
receptor antagonist32 reduced left
ventricular mass without affecting co-
ronary flow and flow reserve in spon-
taneously hypertensive rats (SHR). In
addition to structural factors, functional
alterations of the coronary vasculature
may contribute to the impaired
coronary flow reserve associated with
hypertension. Thus, endothelial
dysfunction manifested by reduced
synthesis and/or increased degradation
of nitric oxide and perhaps reduced
sensitivity of vascular smooth muscle
cells to nitric oxide in the coronary
circulation, is associated with hyper-
tension48-52. On the other hand,
augmented synthesis of endothelium
derived contracting factors may also
participate53.

Excessive accumulation of fibrilar
collagen in the interstitium of the
hypertrophied left ventricle is a now
well- accepted aspect of HHD, clearly
distinguishing it from physiological
LVH (without adverse consequen-
ces)4,18,54-57. This increased ventricular
collagen concentration promotes
increased wall stiffness and initiates
diastolic dysfunction4,58, which lead to
the eventual appearance of overt heart
failure58-62. Furthermore, impaired
ventricular relaxation associated with
the diffuse interstitial fibrosis further
decreases myocardial perfusion since
coronary flow occurs primarily during
diastole. Additionally, the perivascular
fibrosis may also impair vasodilatation
and consequentially coronary flow.

The circulating as well as locally
generated effector hormones of the
renin-angiotensin-aldosterone system
(i.e., angiotensin II and aldoste-
rone)13,18,56,57,63 as well as excess salt
intake64,65, independent of arterial pres-
sure, may affect the structural remode-
ling of the myocardial collagen matrix.
However, the underlying mechanisms
are still under intensive study. In vitro
studies have shown that the angiotensin
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II induced collagen accumulation
results from stimulated collagen
synthesis in rat cardiac fibroblast with
concomitantly suppressed collagenase
activity66. Furthermore, it has been
proposed that MAP/ER kinase and
cAMP-adenosine pathways may
contribute to the abnormal proliferation
of cardiac fibroblast observed in
hypertension67,68. Clinical evidence
suggesting a role of aldosterone and
salt in promoting the increased
myocardial collagen concentration in
patients have been also recently
published69,70.

Thus, the goal of antihypertensive
therapy should be not only to prevent
or reduce myocytic hypertrophy, but
also to diminish ventricular fibrosis
and the structural and functional
alterations of the coronary circulation
and, of course the optimal control of
arterial pressure. For many years we
have been studying the ability of various
antihypertensive compounds to
prevent or reduce these adverse car-
diovascular effects of hypertension
and the results of these studies will be
considered in the discussion that
follows.

Prevention and treatment
of HHD

Left ventricular hypertrophy.
Vigorous use of antihypertensive
therapy as soon as persistently elevated
arterial pressure is established will
prevent LVH1. Furthermore, every
class of antihypertensive agents will
prevent LVH as long as arterial
pressure is well-controlled. Even
hydralazine, initiated in four week old
SHR for 32 weeks, will prevent the
onset of hypertension and the LVH71.
Also, beta-adrenergic antagonists or
an ACE inhibitor given from con-
ception through the development stage
of SHR hypertension had similar
effects72,73. On the other hand, large
body of experimental and clinical

evidence has shown that various
antihypertensive agents may differ in
their ability to reduce LV mass once it
has developed27,31-35,74-88. We have
repedeatly reported evidence for a
dissociation between hemodynamic
and structural effects of various
antihypertensive drugs (even within
the same class of agents), suggesting
that reduction in left ventricular mass
does not solely depend on the reduction
of cardiac afterload78,81. For example,
cardiac mass remained unchanged or
might be increased with hydralazine
or minoxidil despite reduced mean
arterial pressure75. On the other hand,
reduced left ventricular mass could
also be achieved independent of an
effective reduction in arterial pres-
sure31,32,80.

One of the most important questions
that arises is whether ventricular
function is preserved when LV mass
is decreased89. Both experimental and
clinical studies have shown that left
ventricular performance after
reduction in LV mass may be
impaired76,78,81, may remain stable83,84

or may even be improved78,81-83,85-88.
The critical question is whether a
decrease in LV mass actually reduces
the associated risk of cardiovascular
morbidity and mortality. At present,
there are no major prospective studies
that have clearly demonstrated this
goal. If such a large multicenter study
appears, it must not only demonstrate
the benefit from reduction in left
ventricular mass itself does occur, it
must also show that it is unrelated to
other potential effects of antihyper-
tensive therapy: arterial pressure
reduction, associated anti-arrhythmic
effects, and so further90.

Coronary insufficiency. In recent
years, a number of studies have shown
experimentally and clinically, that the
coronary hemodynamic impairment in
hypertensive LVH may be improved
using various antihypertensive agents.
In SHR, we have demonstrated de-

creased minimal coronary vascular
resistance and increased coronary flow
reserve with calcium antagonists34,
ACE inhibitors31,32,35, and angiotensin
II type 1 receptor blockers35 as well as
with the prolonged administration of
the nitric oxide precursor L-arginine33.
Other experimental studies have
shown that reduced medial thickness
of intramyocardial arterioles as well
as increased capillary density is also a
major component of the structural basis
for improved coronary hemodynamics
associated with ACE inhibitor or
calcium antagonist therapy91-93.
Furthermore, our more recent study in
aged SHR demonstrated that drugs
that interfere with renin-angiotensin
II- aldosterone system may be more
effective in reversing coronary im-
pairment associated with hypertension
and aging34. Moreover, we have also
shown that the combination of an ACE
inhibitor and angiotensin II type 1
receptor antagonist was superior to
either of these two agents was used
alone in equidepressor doses35. This
intervention provided a multiple-locus
for interference with the renin-angio-
tensin II-aldosterone system: reduced
generation of angiotensin II preventing
vasoconstrictor, hormone-stimulating
and mitogenic effects of angiotensin
II; increased bradykinin-induced
coronary vasodilatation, the beneficial
effect of improving the endothelial
dysfunction of the coronary circulation
by the ACE inhibition; and additional
angiotensin II type 1 receptor inhibition
especially when angiotensin II is
formed by a  non-ACE enzymes (e.g.,
chymase).

More recently clinical data have
confirmed the foregoing experimental
findings demonstrating that coronary
reserve can be improved in hyper-
tensive patients using calcium anta-
gonists94,95, ACE inhibitors96-98, and
L-arginine99,100. Furthermore, signifi-
cant reduction in minimal coronary
vascular resistance after an ACE
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inhibitor, but not a beta-adrenergic
receptor blocker, may reflect different
mechanisms of antihypertensive
therapy at a variety of structural and
physiological levels96. These findings
are in agreement with results of those
studies that examined the effects of
antihypertensive therapy on resistance
vessels in humans101,102.  For example,
improved wall:lumen ratio and better
functional response of these arteries
were achieved after long-term therapy
with ACE inhibitor but not with beta-
blockers. Furthermore, reduction in
myocardial fibrosis was associated
with marked improvement in coronary
flow reserve and diastolic function
after ACE inhibitor treatment in a
recent clinical studies97,103.

Ventricular fibrosis. Related to
the concept of hormone-induced
myocardial fibrosis, the ACE inhibitors
but not hydralazine, were able to
prevent the appearance of myocardial
fibrosis in SHR104,105. Moreover, in
rats with increased circulating levels
of effector hormones of the renin-
angiotensin II-aldosterone system due
to unilateral renal ischemia or
hyperaldosteronism, the aldosterone
receptor antagonist spironolactone or
the ACE inhibitor captopril attenuated
the development of myocardial
fibrosis106,107. Thus, in a number of
studies, reduced LV mass produced
by various antihypertensive agents,
was associated with a reduced fibrilar
collagen deposition within the cardiac
interstitium34,35,43,85,93,97,103,107. In this
respect, agents that interfere with
renin-angiotensin-aldosterone system
have demonstrated these cardiopro-
tective properties85,34,93,97,103. More
recently, studies from our laboratory
have demonstrated that the angio-
tensin II type 1 receptor antagonist
candesartan was extremely effecti-
ve in reversing the adverse cardio-
vascular effects of hypertension in

SHR including normalization of
arterial pressure, improving markedly
systemic and coronary hemodyna-
mics, and reducing left ventricular
mass and hydroxyproline concentra-
tion in both ventricles (unpublished
data). It is of particular note that
concomitant administration of the
angiotensin II type 2 receptor
antagonist PD 123319 slightly reduced
the hypotensive action of the AT1
receptor inhibitor, and prevented the
antifibrotic effect of the angiotensin
II type 1 receptor antagonist on
myocardial hydroxyproline concen-
tration. Since these findings suggest
an important role of AT2 receptor
activation in reducing ventricular
fibrosis with AT1 receptor antago-
nism, selective stimulation of AT2
could provide an additional valuable
cardioprotective feature of AT1
blockade in hypertensive patients
predisposed to cardiac failure. Redu-
ced left ventricular collagen concen-
tration and improved coronary hemo-
dynamics have also been  achieved
with an ACE inhibitor or a calcium
antagonist in aged SHR34. It was of
interest in this and more other studies
that the calcium antagonist increased
right ventricular mass and collagen in
the SHR34,83.  This profibrotic effect
on the right ventricle was prevented by
cotreatment with an ACE inhibitor even
though left ventricular collagen was not
decreased further with the calcium
antagonist83,108. In addition, we confir-
med the early increase in right ventri-
cular wall thickness with a calcium
antagonist in patients109. It seems clear
that these agents did not affect collagen
content in the right ventricle wall through
similar mechanisms as in the left
ventricle; and these findings continue
to warrant further investigation. Other
experimental studies have shed further
light on the underlying antifibrotic
mechanisms of action by agents that

interfere with renin-angiotensin II-
aldosterone system. They suggest the
possibilities of inhibition of collagen type
1 synthesis110 and enhanced collagen
degradation by activation of collagenase
activity85. We and others have also
demonstrated an antifibrotic effect of
prolonged L-arginine35, the beta-
adrenergic antagonist carvedilol111,
aspirin, and methylprednisolone admi-
nistration112.

Furthermore, very recent clinical
studies have demonstrated that long-
term treatment with ACE inhibitors
promoted reduction of interstitial
collagen and periarteriolar fibrosis of
resistance vessels accompanied with
marked improvement in coronary flow
reserve and diastolic function97,103.
These clinical findings are very
promising and strongly suggest that
hemodynamic and structural alte-
rations associated with HHD are not
necessarily irreversible and can be
corrected with certain specific thera-
peutic interventions.

Conclusion

In order to recommend the best
therapeutic strategies for HHD, all
the mechanisms leading to structural
and functional cardiovascular altera-
tions associated with sustained increa-
se in arterial pressure must be consi-
dered. Thus, it is important to analyze
carefully and to clearly delineate the
effects of each antihypertensive agent
with respect to its ability to optimally
control arterial pressure and to prevent
or reverse the coronary hemodyna-
mics, myocardial alterations, and
adverse extracellular effects. Future
clinical trials must address the potential
efficacy and drug actions in the same
manner. Although it may seem an
extra ambitious goal, most recent
clinical studies suggest they can be
and must be pursued.
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