Effect of exercise training in essential arterial hypertension

Ferdinando Iellamo¹², Maurizio Volterrani²

ABSTRACT

The objective of this brief review is to give an overview on the current status of exercise training in the prevention and treatment of hypertension. Evidence derived from studies which support the relevance of exercise as a core component of hypertension therapy are presented along with the beneficial effects of exercise training in counteracting the mechanisms sustaining high blood pressure in the context of secondary as well as primary cardiovascular prevention. Practical guides to plan exercise training programs are also provided. Finally, practical open questions in exercise training are advanced.

KEYWORDS

Hypertension, exercise training, cardiovascular disease, primary prevention, secondary prevention.

High blood pressure is a serious public health challenge worldwide. Epidemiologic studies indicate that elevated blood pressure leads to stroke, coronary heart disease, congestive heart failure, and end-stage renal disease¹. Clinical trials have demonstrated that lowering blood pressure reduces incidence of and death from cardiovascular disease¹². These studies also indicated that even small decreases in arterial blood pressure could substantially reduce the risk for diseases associated with elevated blood pressure⁴.

The 2007 ESH-ESC European guidelines⁴ on the treatment of arterial hypertension indicate the following “normal” values: ideal: < 120/< 80, normal: 120-129/80-84 and high normal: 130-139/85-89 mmHg. According to these guidelines, arterial hypertension (AH) is defined on the basis of arterial pressure (AP) > 140 mmHg for systolic pressure and 90 mmHg for diastolic pressure.

Antihypertensive treatment can reduce the risk of fatal and non-fatal ictus by 30%-40% and the risk of coronary events by 20%³. A reduction in pressure of 4-6 mmHg cuts ictus cases by 35%-40%, ischemic heart disease by 20%-25%, and cardiovascular mortality by 25%⁵. Reduced systolic pressure of 10 mmHg and diastolic pressure of 5 mmHg permits a reduction of 50%-60% in the risk of ictus and of 40%-50% in coronary disease⁶.

Along with pharmacological therapy, there is now established evidence and overall consensus in current guidelines on the effectiveness of regular physical activity in the treatment of hypertension, in combination with drug(s) therapy or even alone⁷⁻⁸. Physical inactivity is a recognized major risk factor for cardiovascular disease, and persons who are less active and less fit have a 30% to 50% greater risk for high blood pressure. Two cohort studies have demonstrated that regular exercise reduces the incidence of hypertension¹⁰,¹¹. In addition to preventing hypertension, regular exercise has been found to lower blood pressure in hypertensive subjects. In mildly hypertensive men, short-term physical activity decreased blood pressure for 8 to 12 hours after exercise, and average blood pressure was lower on exercise days than on non exercise days¹². In hypertensive black men, moderate physical activity performed for 16 to 32 weeks resulted in a decrease in diastolic blood pressure, which was sustained after a reduction in antihypertensive medication¹³.
Randomized controlled trials have shown that exercise training is capable of reducing blood pressure up to 11 and 8 mmHg, for systolic and diastolic pressures, respectively, in approximately 75% of hypertensive individuals of both genders7,14 with mean reduction of 6.9 and 4.9 mmHg for systolic and diastolic pressure, respectively15.

In practical terms, this would mean a regression from a “high” to a “normal” blood pressure state for a large part of hypertensive subjects, the majority of which usually fall into the category of mild hypertension. Regular physical activity proved to be effective in improving pharmacological control as the therapeutic dosage can also be reduced16. The combined action of training, weight loss, control of hyperglycemia and dyslipidemia can normalize minor forms of arterial hypertension, without the need for drugs. It is important, however, in the presence of other risk factors, to associate an appropriate life-style with physical training, characterised by a low sodium diet and weight loss associating a low calorie diet with low animal fat content in the event of an overweight situation, a limited intake of sugars and alcohol, an increase in fruit and vegetables and the abolition of smoking.

Indeed, physical exercise can cut the 10-year cardiovascular risk by 25%9 and is now definitely indicated as part of the therapy in hypertensive subjects for better control of AP and of concomitant cardiovascular risk. Thus, the AHA17 the ACC18, the Centers for Disease Control and Prevention19, the ACSM20, the National Institutes of Health21, have declared a sedentary lifestyle a major modifiable coronary risk factor. Accordingly, a consensus has been reached that a minimum of 30 up to 60 minutes of moderate intensity physical activity (continuous or intermittent) is required on most (at least 3 to 5 but preferably all) days of the week to reduce the risk of CAD events20,21.

EXERCISE TRAINING PROGRAM
Aerobic endurance exercise appears to be more effective at lowering blood pressure than other kinds of exercise, including resistance exercise22. Any aerobic activity seems to work, including walking, jogging or cycling, although cycling seems to be the most effective23.

Moderate intensity exercise seems to be the most effective for reducing blood pressure in hypertensive patients7. This would be equivalent to ≈1.5 mile per day of brisk walking at an energy cost of 150 kcal per day for an average-sized person. This exercise intensity can be accomplished much easier in middle-age and old hypertensive patients than more vigorous exercise can, results in less musculoskeletal injuries and cardiovascular events, and can be maintained throughout life.

Moderate aerobic exercise training would correspond to a target heart rate of 75% to 85% of HRmax, or to 65% to 75% in older individuals, to be gradually achieved and maintained throughout the training program. When possible, target HR should be determined on the basis of HRmax actually achieved during an ergometric exercise test to exhaustion, rather than on the basis of nomographic tables (e.g., 220 minus age). This would avoid overestimation of the training load with respect to the actual exercise capacity/fitness level, which often is less than predicted on the basis of age-predicted maximum HR. This precaution would contribute to lessen musculoskeletal injuries and, most important, lessen exercise-induced cardiovascular events. A pre-training exercise stress test is, otherwise mandatory in hypertensive patients with co-morbidity, e.g., ischemic heart disease etc. A useful approach to activity prescription is to identify the desirable rating of perceived exertion and instruct individuals to adhere to that intensity. A suggested rating of perceived exertion for most healthy individuals is 12 to 16 (“somewhat hard to hard”) on a Borg scale of 6 to 20, an approach that is both effective and acceptable. The physical training process should contemplate an increase in the number and duration of sessions and only later in their intensity. At variance with other CV diseases, resistance and most of all strength exercise are not to be recommended in hypertensive patients, because of the possibility of reaching very high blood pressure values during these kinds of exercise and the much more limited effect on blood pressure reduction. Examples of continuous and intermittent aerobic exercise training programs are illustrated in tables 1 and 2. It is important to outline the need of 5 to 10 minutes of warm-up (i.e., exercising at a low intensity) before and after (cool-down) the training session. Such activities help stretch and warm up muscles and ligaments in preparation for the activity session. The cool-down period also prevents hypotension, which may occur with the sudden cessation of exercise.

Reductions in blood pressure are seen usually within 10 weeks2 after starting an exercise training program. This result could reinforce motivation in patients. However, it should be remembered that the benefits of exercise training are rapidly lost after quitting regular physical activity. Hence, patients have to be informed on this issue and be continuously encouraged to be physically active. It is important to bear in mind that exercise therapy must be continued all life long, musculoskeletal comorbidities permitting.

MECHANISMS OF EXERCISE-INDUCED DECREASE IN BLOOD PRESSURE
Despite the recognized effectiveness of regular physical activity in reducing blood pressure, the mechanisms responsible for exercise-induced reduction in blood pressure are not completely defined, but it is very likely that several intertwined mechanisms contribute as the etiology of essential hypertension is multifactorial. The ultimate hemodynamic mechanism sustaining
The main practical problem is the adherence to all life long regular physical activity programs, which is an essential element for success in achieving and maintaining the benefit of exercise on blood pressure, as well as other cardiovascular risk factors and health. The flexibility of accumulating the adequate dose of physical activity in short, repeated, sessions throughout the day might improve motivation and adherence to regular exercise programs. Another important factor, especially at the beginning of exercise programs, is to start at lower intensities than the predicted and then to progress gradually to the recommended exercise prescription, with assessment of success and reinforcement provided regularly. Short-term successes may increase the patient’s self-efficacy for being physically active. At present, periodic follow-up visits with encouragement and reinforcement by physician appear mandatory to achieve this goal.

UNSOLVED PROBLEMS

The main practical problem is the adherence to all life long regular physical activity programs, which is an essential element for success in achieving and maintaining the benefit of exercise on blood pressure, as well as other cardiovascular risk factors and health.

The flexibility of accumulating the adequate dose of physical activity in short, repeated, sessions throughout the day might improve motivation and adherence to regular exercise programs. Another important factor, especially at the beginning of exercise programs, is to start at lower intensities than the predicted and then to progress gradually to the recommended exercise prescription, with assessment of success and reinforcement provided regularly. Short-term successes may increase the patient’s self-efficacy for being physically active. At present, periodic follow-up visits with encouragement and reinforcement by physician appear mandatory to achieve this goal.

CONCLUSIONS

The findings summarized in this brief review make evident that aerobic exercise is of paramount importance as a strategy for prevention and treatment hypertension and its complications.

Table 1. Classification of physical activity intensity

<table>
<thead>
<tr>
<th>Intensity</th>
<th>Relative intensity</th>
<th>Absolute intensity (METs)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Maximum HR (%)</td>
<td>Young (20-39)</td>
</tr>
<tr>
<td>Very light</td>
<td>< 30</td>
<td>< 3</td>
</tr>
<tr>
<td>Light</td>
<td>30-49</td>
<td>3.4-7</td>
</tr>
<tr>
<td>Moderate</td>
<td>50-69</td>
<td>4.8-7.1</td>
</tr>
<tr>
<td>Hard</td>
<td>70-89</td>
<td>7.2-10.1</td>
</tr>
<tr>
<td>Very hard</td>
<td>≥ 90</td>
<td>≥ 10.2</td>
</tr>
</tbody>
</table>

Table 2. Example of an aerobic physical activity program

<table>
<thead>
<tr>
<th>Frequency</th>
<th>Intensity</th>
<th>Duration</th>
<th>Modality</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-5 (better if all) days/week</td>
<td>55-85% HRmax</td>
<td>3-60 min</td>
<td>Walking, Running, Cycling</td>
</tr>
<tr>
<td>Upper limbs</td>
<td>Arms ergometer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Combined (upper and lower limbs)</td>
<td>Rowing (rowing machine), Swimming, Calisthenics, dancing etc.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
It is now the time to consider physical activity as a therapy, and physicians should be trained to being capable of prescribing the appropriate dose of exercise, in terms of type, intensity and frequency, as if it were the dosage of a drug. Public health policies are mandatory to identify ways to enhance exercise prescription by physicians and adherence to training programs by patients.

Further studies are clearly needed to better define the mechanisms involved in the blood pressure-lowering effect of exercise as well as to best define the more appropriate dose of exercise on an individual basis.

REFERENCES
